论文标题
较高的属属相关器,用于无张力$ \ rm {ads} _3 $ strings
Higher genus correlators for tensionless $\rm{AdS}_3$ strings
论文作者
论文摘要
最近在Arxiv:2009.11306中显示了树级相关性在$ \ rm {ads} _3 \ times \ times \ rm {s}^3 \ times \ times \ mathbb {t}^4 $中的相关形式与对中的$ $ n $ n $ n $ usbif of $ n $ n $ c. 限制。该分析利用了$ \ mathfrak {psu}(1,1 | 2)_1 $ wess-zumino-witten模型的自由场实现,以及令人惊讶的身份将这些相关函数直接与$ \ rm {ads} _3 $的覆盖边界的分支覆盖。特别是,这种身份暗示了字符串理论相关器定位于模量空间中的点的异常特征,在该空间中,世界表涵盖了$ \ rm {ads} _3 $的边界,并在插入点附近的指定分支。在这项工作中,我们将这一分析推广到了树级近似,证明了其对更高属的世界表格的有效性,然后为$ \ rm {ads}/\ rm {cft} $在各个顺序的订单中提供了有力的证据。
It was recently shown in arXiv:2009.11306 that tree-level correlation functions in tensionless string theory on $\rm{AdS}_3\times\rm{S}^3\times\mathbb{T}^4$ match the expected form of correlation functions in the symmetric orbifold CFT on $\mathbb{T}^4$ in the large $N$ limit. This analysis utilized the free-field realization of the $\mathfrak{psu}(1,1|2)_1$ Wess-Zumino-Witten model, along with a surprising identity directly relating these correlation functions to a branched covering of the boundary of $\rm{AdS}_3$. In particular, this identity implied the unusual feature that the string theory correlators localize to points in the moduli space for which the worldsheet covers the boundary of $\rm{AdS}_3$ with specified branching near the insertion points. In this work we generalize this analysis past the tree-level approximation, demonstrating its validity to higher genus worldsheets, and in turn providing strong evidence for this incarnation of the $\rm{AdS}/\rm{CFT}$ correspondence at all orders in perturbation theory.