论文标题

与探矿者的出色人群推断

Stellar Population Inference with Prospector

论文作者

Johnson, Benjamin D., Leja, Joel, Conroy, Charlie, Speagle, Joshua S.

论文摘要

从观察到的光度法和光谱学的恒星种群的物理特性推断是研究星系进化的关键目标。近年来,可用数据的质量和数量增加了,并且已经采取了相应的努力来增加用于解释这些观察结果的恒星种群模型的现实主义。现在,详细描述观测到的星系光谱分布需要大量高度相关参数的物理模型。这些模型不容易适合网格,因此需要对可用参数空间进行全面探索。我们提出了探矿者,这是一种灵活的代码,用于从光度法和光谱范围从IR波长跨越光度法和光谱的恒星种群参数。该代码基于向前建模数据和蒙特卡洛对后参数分布进行采样,启用复杂模型并探索中等维参数空间。我们描述了代码的关键要素,并讨论了推动这些成分设计的一般理念。我们在几个数据集上演示了代码的某些功能,包括模拟和真实数据。

Inference of the physical properties of stellar populations from observed photometry and spectroscopy is a key goal in the study of galaxy evolution. In recent years the quality and quantity of the available data has increased, and there have been corresponding efforts to increase the realism of the stellar population models used to interpret these observations. Describing the observed galaxy spectral energy distributions in detail now requires physical models with a large number of highly correlated parameters. These models do not fit easily on grids and necessitate a full exploration of the available parameter space. We present prospector, a flexible code for inferring stellar population parameters from photometry and spectroscopy spanning UV through IR wavelengths. This code is based on forward modeling the data and Monte Carlo sampling the posterior parameter distribution, enabling complex models and exploration of moderate dimensional parameter spaces. We describe the key ingredients of the code and discuss the general philosophy driving the design of these ingredients. We demonstrate some capabilities of the code on several datasets, including mock and real data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源