论文标题

基于原型的增量少量射击语义分段

Prototype-based Incremental Few-Shot Semantic Segmentation

论文作者

Cermelli, Fabio, Mancini, Massimiliano, Xian, Yongqin, Akata, Zeynep, Caputo, Barbara

论文摘要

语义细分模型具有两个基本弱点:i)它们需要具有昂贵的像素级注释的大型训练集,ii)它们具有静态输出空间,受训练集的类别的约束。为了解决这两个问题,我们介绍了一个新任务,增量的几杆细分(IFSS)。 IFSS的目的是通过少数带注释的图像的新类别扩展验证的分割模型,而无需访问旧的培训数据。为了克服现有模型的局限性,我们提出了基于原型的增量少量分割(PIF),将原型学习和知识蒸馏融合在一起。 PIF利用原型来初始化新类的分类器,从而微调网络以完善其功能表示。我们在旧类原型的分数上设计了基于原型的蒸馏损失,以避免过度拟合和遗忘,并批量固定化以应对非I.I.I.D.FEW-few-shot数据。我们为IFSS创建了一个广泛的基准,显示PIF在所有情况下都优于几次射击和增量学习方法。

Semantic segmentation models have two fundamental weaknesses: i) they require large training sets with costly pixel-level annotations, and ii) they have a static output space, constrained to the classes of the training set. Toward addressing both problems, we introduce a new task, Incremental Few-Shot Segmentation (iFSS). The goal of iFSS is to extend a pretrained segmentation model with new classes from few annotated images and without access to old training data. To overcome the limitations of existing models iniFSS, we propose Prototype-based Incremental Few-Shot Segmentation (PIFS) that couples prototype learning and knowledge distillation. PIFS exploits prototypes to initialize the classifiers of new classes, fine-tuning the network to refine its features representation. We design a prototype-based distillation loss on the scores of both old and new class prototypes to avoid overfitting and forgetting, and batch-renormalization to cope with non-i.i.d.few-shot data. We create an extensive benchmark for iFSS showing that PIFS outperforms several few-shot and incremental learning methods in all scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源