论文标题

在$ \ mathrm {psl} _ {2}(\ mathbb {f} _ {q})$上的非解释单词地图上

On non-surjective word maps on $\mathrm{PSL}_{2}(\mathbb{F}_{q})$

论文作者

Biswas, Arindam, Saha, Jyoti Prakash

论文摘要

jambor-liebeck-o'brien表明,存在非proper-power单词映射,这些单词映射在$ \ mathrm {psl} _ {2}(\ Mathbb {f} _ {q} _ {q})$上没有汇总,对于无限的许多$ q $。这为Shalev的猜想提供了第一个反例,该示例指出,如果两个可变性的单词不是非客气单词的适当力量,那么相应的单词映射是在$ \ mathrm {psl} _2 _2(\ mathbb {f} _ {q} _ {q})上的$ \ mathrm {psl} _2 _ {q} _ {q})$。在他们的工作中,我们构建了这些类型的非解放单词地图的新示例。作为一个应用程序,我们在$ \ Mathbb Q $的绝对Galois组上获得了非解释的单词地图。

Jambor--Liebeck--O'Brien showed that there exist non-proper-power word maps which are not surjective on $\mathrm{PSL}_{2}(\mathbb{F}_{q})$ for infinitely many $q$. This provided the first counterexamples to a conjecture of Shalev which stated that if a two-variable word is not a proper power of a non-trivial word, then the corresponding word map is surjective on $\mathrm{PSL}_2(\mathbb{F}_{q})$ for all sufficiently large $q$. Motivated by their work, we construct new examples of these types of non-surjective word maps. As an application, we obtain non-surjective word maps on the absolute Galois group of $\mathbb Q$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源