论文标题
天线倾斜优化的安全加固学习体系结构
A Safe Reinforcement Learning Architecture for Antenna Tilt Optimisation
论文作者
论文摘要
当应用于现实世界问题时,与环境的安全互动是增强学习(RL)最具挑战性的方面之一。当不安全的行动对环境产生较高或不可逆转的负面影响时,这一点尤其重要。在网络管理操作的背景下,远程电气倾斜(RET)优化是一种安全至关重要的应用,在该应用中,基本站天线倾斜角的探索性修改可能会导致网络中的性能降低。在本文中,我们提出了一个模块化的安全加固学习(SRL)体系结构,然后用来解决蜂窝网络中的RET优化。在这种方法中,安全屏蔽层不断基准测试RL代理对安全基线的性能,并确定在网络上执行的安全天线倾斜更新。我们的结果表明,在确保执行动作的安全性的同时,SRL代理的性能提高了。
Safe interaction with the environment is one of the most challenging aspects of Reinforcement Learning (RL) when applied to real-world problems. This is particularly important when unsafe actions have a high or irreversible negative impact on the environment. In the context of network management operations, Remote Electrical Tilt (RET) optimisation is a safety-critical application in which exploratory modifications of antenna tilt angles of base stations can cause significant performance degradation in the network. In this paper, we propose a modular Safe Reinforcement Learning (SRL) architecture which is then used to address the RET optimisation in cellular networks. In this approach, a safety shield continuously benchmarks the performance of RL agents against safe baselines, and determines safe antenna tilt updates to be performed on the network. Our results demonstrate improved performance of the SRL agent over the baseline while ensuring the safety of the performed actions.