论文标题
基于视觉的无人机在室外环境中
Vision-based Drone Flocking in Outdoor Environments
论文作者
论文摘要
无人机群的分散部署通常依赖于安装在车辆上的代理间通信或视觉标记,以简化其相互检测。这封信提出了一种基于视觉的检测和跟踪算法,该算法使无人机可以在没有通信或视觉标记的情况下导航。我们采用卷积神经网络来实时检测和定位附近的代理。我们没有手动标记数据集,而是自动注释图像通过系统地在静态相机前飞行四轮驱动器,从而使用背景减法来训练神经网络。我们使用多机构状态跟踪器来估计附近药物的相对位置和速度,随后将其馈送到羊群以进行高级控制。这些无人机配备了多台摄像机,可提供全向视觉输入。相机设置可通过避免盲点来确保羊群的安全性,而不管剂的配置如何。我们通过使用拟议的基于视觉的羊群控制算法控制的三个实际四轮驱动器来评估该方法。结果表明,尽管背景杂乱无章和艰难的照明条件,无人机仍可以在室外环境中安全导航。源代码,图像数据集和训练有素的检测模型可在https://github.com/lis-epfl/vswarm上找到。
Decentralized deployment of drone swarms usually relies on inter-agent communication or visual markers that are mounted on the vehicles to simplify their mutual detection. This letter proposes a vision-based detection and tracking algorithm that enables groups of drones to navigate without communication or visual markers. We employ a convolutional neural network to detect and localize nearby agents onboard the quadcopters in real-time. Rather than manually labeling a dataset, we automatically annotate images to train the neural network using background subtraction by systematically flying a quadcopter in front of a static camera. We use a multi-agent state tracker to estimate the relative positions and velocities of nearby agents, which are subsequently fed to a flocking algorithm for high-level control. The drones are equipped with multiple cameras to provide omnidirectional visual inputs. The camera setup ensures the safety of the flock by avoiding blind spots regardless of the agent configuration. We evaluate the approach with a group of three real quadcopters that are controlled using the proposed vision-based flocking algorithm. The results show that the drones can safely navigate in an outdoor environment despite substantial background clutter and difficult lighting conditions. The source code, image dataset, and trained detection model are available at https://github.com/lis-epfl/vswarm.