论文标题
在临床实践中缺少预测值值的实时插补
Real-time imputation of missing predictor values in clinical practice
论文作者
论文摘要
临床准则广泛建议使用预测模型,但通常需要有关所有预测因素的完整信息,这些预测因素并不总是在日常实践中可用。我们描述了在实践中使用预测模型时实时处理缺失预测值的两种方法。我们将广泛使用的平均插补方法(M-IMP)与通过利用观察到的患者特征来个性化归纳的方法进行了比较。这些特征可能包括预测模型变量和其他特征(辅助变量)。该方法是使用患者特征的联合多元正常模型(联合建模归合; JMI)实施的。来自两个具有心血管预测因子和结果的不同心血管同胞的数据用于评估实时插补方法。我们量化了预测模型的整体性能(线性预测指标的平方误差(MSE)),歧视(C-指标),校准(截距和斜率)和净益处(决策曲线分析)。与平均插补相比,JMI显着改善了MSE(0.10 vs. 0.13),C-指数(0.70 vs 0.68)和校准(整个校准:0.04 vs. 0.06;校准斜率:1.01 vs. 0.92),尤其是在融合了Auxiliary Variables时。当插补方法基于外部队列时,校准会恶化,但歧视仍然相似。我们建议使用具有辅助变量的JMI用于缺失值的实时插图,并在新的设置或(子)种群中实现插图模型时更新插入模型。
Use of prediction models is widely recommended by clinical guidelines, but usually requires complete information on all predictors that is not always available in daily practice. We describe two methods for real-time handling of missing predictor values when using prediction models in practice. We compare the widely used method of mean imputation (M-imp) to a method that personalizes the imputations by taking advantage of the observed patient characteristics. These characteristics may include both prediction model variables and other characteristics (auxiliary variables). The method was implemented using imputation from a joint multivariate normal model of the patient characteristics (joint modeling imputation; JMI). Data from two different cardiovascular cohorts with cardiovascular predictors and outcome were used to evaluate the real-time imputation methods. We quantified the prediction model's overall performance (mean squared error (MSE) of linear predictor), discrimination (c-index), calibration (intercept and slope) and net benefit (decision curve analysis). When compared with mean imputation, JMI substantially improved the MSE (0.10 vs. 0.13), c-index (0.70 vs 0.68) and calibration (calibration-in-the-large: 0.04 vs. 0.06; calibration slope: 1.01 vs. 0.92), especially when incorporating auxiliary variables. When the imputation method was based on an external cohort, calibration deteriorated, but discrimination remained similar. We recommend JMI with auxiliary variables for real-time imputation of missing values, and to update imputation models when implementing them in new settings or (sub)populations.