论文标题
耦合动力系统的减少阶模型:数据驱动方法和Koopman操作员
Reduced-Order Models for Coupled Dynamical Systems: Data-driven Methods and the Koopman Operator
论文作者
论文摘要
在许多科学和技术领域,为降低模型提供有效,准确的参数化是一个关键目标。在这里,我们提出了实现这一目标的数据驱动和理论方法之间的牢固联系。 Koopman操作员的形式扰动扩展使我们能够得出弱耦合动力学系统的一般随机参数化。这样的参数化产生了一组随机噪声和内存内核公式,以描述未解决的变量的效果。我们表明,当耦合是加性时,涉及的扰动扩展无需截断。笨拙的间距方程式可以作为更简单的多级马尔可夫模型重塑,并且我们与广义的langevin方程建立了直观的连接。这种连接有助于在此处基于自上而下的基于方程式的方法与已建立的经验模型降低(EMR)方法之间建立并行性,该方法已证明可以为部分观察到的系统提供有效的动力封闭。因此,一方面,我们的发现支持EMR方法的物理基础和鲁棒性,另一方面,它说明了用于得出参数化的扰动扩展的实际相关性。
Providing efficient and accurate parametrizations for model reduction is a key goal in many areas of science and technology. Here we present a strong link between data-driven and theoretical approaches to achieving this goal. Formal perturbation expansions of the Koopman operator allow us to derive general stochastic parametrizations of weakly coupled dynamical systems. Such parametrizations yield a set of stochastic integro-differential equations with explicit noise and memory kernel formulas to describe the effects of unresolved variables. We show that the perturbation expansions involved need not be truncated when the coupling is additive. The unwieldy integro-differential equations can be recast as a simpler multilevel Markovian model, and we establish an intuitive connection with a generalized Langevin equation. This connection helps setting up a parallelism between the top-down, equations-based methodology herein and the well-established empirical model reduction (EMR) methodology that has been shown to provide efficient dynamical closures to partially observed systems. Hence, our findings support, on the one hand, the physical basis and robustness of the EMR methodology and, on the other hand, illustrate the practical relevance of the perturbative expansion used for deriving the parametrizations.