论文标题
学习矢量量化Amodal Blastomere实例分段的形状代码
Learning Vector Quantized Shape Code for Amodal Blastomere Instance Segmentation
论文作者
论文摘要
胚泡实例分割对于分析胚胎异常非常重要。为了测量胚泡的准确形状和尺寸,必须进行氨基分割。 Amodal实例细分旨在即使对象不完全可见,也旨在恢复对象的完整轮廓。对于每个检测到的对象,先前的方法直接从输入功能中回归目标掩码。但是,在不同量的遮挡量下的对象的图像应具有相同的Amodal面膜输出,这使得训练回归模型变得更加困难。为了减轻问题,我们建议将输入功能分类为中间形状代码,并从中恢复完整的对象形状。首先,我们预先训练了矢量量化的变量自动编码器(VQ-VAE)模型,以从地面真实膜掩模中学习这些离散的形状代码。然后,我们将VQ-VAE模型与其他细化模块合并到Amodal实例分割管道中。我们还检测到遮挡图,以将遮挡信息与骨干功能集成在一起。因此,我们的网络忠实地检测到界限的Amodal对象框。在内部胚胎细胞图像基准上,该方法的表现优于先前的最新方法。为了显示普遍性,我们在公共亲属自然图像基准上显示了细分结果。为了检查学习的形状代码和模型设计选择,我们对简单叠加形状的合成数据集进行消融研究。我们的方法将可以准确地测量体外受精(IVF)诊所中的囊泡组,这可能会提高IVF的成功率。
Blastomere instance segmentation is important for analyzing embryos' abnormality. To measure the accurate shapes and sizes of blastomeres, their amodal segmentation is necessary. Amodal instance segmentation aims to recover the complete silhouette of an object even when the object is not fully visible. For each detected object, previous methods directly regress the target mask from input features. However, images of an object under different amounts of occlusion should have the same amodal mask output, which makes it harder to train the regression model. To alleviate the problem, we propose to classify input features into intermediate shape codes and recover complete object shapes from them. First, we pre-train the Vector Quantized Variational Autoencoder (VQ-VAE) model to learn these discrete shape codes from ground truth amodal masks. Then, we incorporate the VQ-VAE model into the amodal instance segmentation pipeline with an additional refinement module. We also detect an occlusion map to integrate occlusion information with a backbone feature. As such, our network faithfully detects bounding boxes of amodal objects. On an internal embryo cell image benchmark, the proposed method outperforms previous state-of-the-art methods. To show generalizability, we show segmentation results on the public KINS natural image benchmark. To examine the learned shape codes and model design choices, we perform ablation studies on a synthetic dataset of simple overlaid shapes. Our method would enable accurate measurement of blastomeres in in vitro fertilization (IVF) clinics, which potentially can increase IVF success rate.