论文标题

两阶段的单图像反射去除,并具有反射感知指导

Two-Stage Single Image Reflection Removal with Reflection-Aware Guidance

论文作者

Li, Yu, Liu, Ming, Yi, Yaling, Li, Qince, Ren, Dongwei, Zuo, Wangmeng

论文摘要

通过许多实际的应用方案,从通过玻璃表面捕获的图像中删除不希望的反射是一个非常具有挑战性的问题。为了改善反射去除,通常采用级联的深层模型来估算传播的方式。但是,大多数现有方法仍然受到限制,以利用前阶段的结果来指导传输估计。在本文中,我们提出了一个新颖的两阶段网络,该网络具有反射感知指导(RAGNET),用于单个图像反射去除(SIRR)。具体而言,首先估算了反射层,因为它通常要简单得多,并且相对容易估计。然后详细详细阐述ReflectionAware引导(RAG)模块,以更好地利用预测传输层中的估计反射。通过合并估计反射和观察的特征图,可以使用(i)来减轻观察结果的反射影响,(ii)部分卷积产生掩码,以减轻从线性组合假设偏离线性的效果。进一步提出了专门的面具损失,以核对编码器和解码器功能的贡献。与最先进的SIRR方法相比,五个常用数据集的实验证明了我们Ragnet的定量和定性优势。源代码和预培训模型可在https://github.com/liyucs/ragnet上找到。

Removing undesired reflection from an image captured through a glass surface is a very challenging problem with many practical application scenarios. For improving reflection removal, cascaded deep models have been usually adopted to estimate the transmission in a progressive manner. However, most existing methods are still limited in exploiting the result in prior stage for guiding transmission estimation. In this paper, we present a novel two-stage network with reflection-aware guidance (RAGNet) for single image reflection removal (SIRR). To be specific, the reflection layer is firstly estimated due to that it generally is much simpler and is relatively easier to estimate. Reflectionaware guidance (RAG) module is then elaborated for better exploiting the estimated reflection in predicting transmission layer. By incorporating feature maps from the estimated reflection and observation, RAG can be used (i) to mitigate the effect of reflection from the observation, and (ii) to generate mask in partial convolution for mitigating the effect of deviating from linear combination hypothesis. A dedicated mask loss is further presented for reconciling the contributions of encoder and decoder features. Experiments on five commonly used datasets demonstrate the quantitative and qualitative superiority of our RAGNet in comparison to the state-of-the-art SIRR methods. The source code and pre-trained model are available at https://github.com/liyucs/RAGNet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源