论文标题

结构形式:掩盖语言建模的依赖性和选区结构的无监督诱导

StructFormer: Joint Unsupervised Induction of Dependency and Constituency Structure from Masked Language Modeling

论文作者

Shen, Yikang, Tay, Yi, Zheng, Che, Bahri, Dara, Metzler, Donald, Courville, Aaron

论文摘要

有两种主要的自然语言语法类别 - 依赖性语法对单词和选区语法之间的一对多信件进行建模,该语法模拟了一个或几个相对单词的组装。尽管以前的无监督解析方法主要集中于仅诱导一类语法,但我们引入了一种新型模型,结构形式,可以同时诱导依赖性和选区结构。为了实现这一目标,我们提出了一个新的解析框架,该框架可以共同生成一个选区树和依赖图。然后,我们通过一种新颖的依赖性受限的自我注意机制将诱导的依赖关系以一种可区分的方式整合到变压器中。实验结果表明,我们的模型可以同时对无监督的选区解析,无监督的依赖解析和掩盖语言建模实现强大的结果。

There are two major classes of natural language grammar -- the dependency grammar that models one-to-one correspondences between words and the constituency grammar that models the assembly of one or several corresponded words. While previous unsupervised parsing methods mostly focus on only inducing one class of grammars, we introduce a novel model, StructFormer, that can simultaneously induce dependency and constituency structure. To achieve this, we propose a new parsing framework that can jointly generate a constituency tree and dependency graph. Then we integrate the induced dependency relations into the transformer, in a differentiable manner, through a novel dependency-constrained self-attention mechanism. Experimental results show that our model can achieve strong results on unsupervised constituency parsing, unsupervised dependency parsing, and masked language modeling at the same time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源