论文标题
具有通用不对称相互作用的细胞组件中的聚类和排序
Clustering and ordering in cell assemblies with generic asymmetric aligning interactions
论文作者
论文摘要
集体细胞迁移在各种生物学过程中起着至关重要的作用,例如发育或癌症增殖。虽然细胞 - 细胞相互作用显然是集体细胞迁移的关键决定因素(除了单个细胞自我启动之外),但控制细胞聚类和集体细胞迁移的出现的物理机制仍然知之甚少。特别是,观察结果表明,二进制细胞 - 细胞碰撞通常会导致细胞极性的反调和和对分离 - 这一过程称为运动的接触抑制(CIL),这预计会不利于形成与相干运动的大型细胞簇。在这里,我们采用一种联合实验和理论方法来确定基本成对细胞 - 细胞相互作用规则的细胞组件的大规模动力学。我们量化了实验性的二元细胞 - 细胞相互作用,并表明它们可以通过重现CIL现象学的最小平衡状成对不对称的相互作用势来捕获它们。我们确定其对称性类别,建立相应的活跃流体动力学理论,并以一般的理由表明,不对称的相互作用会破坏大规模的聚类和订购,而是导致有限大小和短极性的细胞簇的液体样细胞簇或完全分散的同位素相。最后,这表明在细胞系统或一般活动系统中类似CIL样的不对称相互作用 - 控制群集的大小和极性,并且可以防止大规模变形和远距离极性,除了密集汇合系统的奇异状态。
Collective cell migration plays an essential role in various biological processes, such as development or cancer proliferation. While cell-cell interactions are clearly key determinants of collective cell migration -- in addition to individual cells self-propulsion -- the physical mechanisms that control the emergence of cell clustering and collective cell migration are still poorly understood. In particular, observations have shown that binary cell-cell collisions generally lead to anti-alignement of cell polarities and separation of pairs -- a process called contact inhibition of locomotion (CIL), which is expected to disfavor the formation of large scale cell clusters with coherent motion. Here, we adopt a joint experimental and theoretical approach to determine the large scale dynamics of cell assemblies from elementary pairwise cell-cell interaction rules. We quantify experimentally binary cell-cell interactions and show that they can be captured by a minimal equilibrium-like pairwise asymmetric aligning interaction potential that reproduces the CIL phenomenology. We identify its symmetry class, build the corresponding active hydrodynamic theory and show on general grounds that such asymmetric aligning interaction destroys large scale clustering and ordering, leading instead to a liquid-like microphase of cell clusters of finite size and short lived polarity, or to a fully dispersed isotropic phase. Finally, this shows that CIL-like asymmetric interactions in cellular systems -- or general active systems -- control cluster sizes and polarity, and can prevent large scale coarsening and long range polarity, except in the singular regime of dense confluent systems.