论文标题

Drinfeld Hecke代数,用于对称群的正特征

Drinfeld Hecke algebras for symmetric groups in positive characteristic

论文作者

Krawzik, Naomi, Shepler, Anne

论文摘要

我们研究了由对称组对多项式环对任意特征领域的多项式环的作用产生的偏斜组代数的变形。在实际或复数的数字上,Lusztig的分级仿射Hecke代数和类似物都是与Drinfeld Hecke代数同构的,其中包括符号反射代数和理性Cherednik代数。在主要特征的领域,出现了新的变形,既捕获了群体作用的破坏,又捕获了定义多项式环的通勤关系的破坏。我们将作用于其自然(可还原)反射表示形式作用的对称组的变形分类。

We investigate deformations of skew group algebras arising from the action of the symmetric group on polynomial rings over fields of arbitrary characteristic. Over the real or complex numbers, Lusztig's graded affine Hecke algebra and analogs are all isomorphic to Drinfeld Hecke algebras, which include the symplectic reflection algebras and rational Cherednik algebras. Over fields of prime characteristic, new deformations arise that capture both a disruption of the group action and also a disruption of the commutativity relations defining the polynomial ring. We classify deformations for the symmetric group acting in its natural (reducible) reflection representation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源