论文标题
通过Orbifolding磁化$ t^2 \ times t^2 $对三代模型的分类
Classification of three generation models by orbifolding magnetized $T^2 \times T^2$
论文作者
论文摘要
我们通过$ \ mathbb {z} _2^{\ rm(per)} $ permutaion的$ t^2_1 \ times t^2_2 $带有磁性通量及其扭曲的旋风。我们对可能导致在磁化的$ t^2_1 \ times t^2_2 $和Orbifolds上导致非散落的Yukawa耦合进行分类,其中包括$ \ Mathbb {Z} _2^{\ rm(per)} $ and and $ \ Mathbb {Z} $ {我们还研究了这种Orbifold模型上的模块化对称性。作为说明模型,我们研究了夸克质量和混合角度的实现。
We study orbifolding by the $\mathbb{Z}_2^{\rm (per)}$ permutaion of $T^2_1 \times T^2_2$ with magnetic fluxes and its twisted orbifolds. We classify the possible three generation models which lead to non-vanishing Yukawa couplings on the magnetized $T^2_1 \times T^2_2$ and orbifolds including the $\mathbb{Z}_2^{\rm (per)}$ permutation and $\mathbb{Z}_2^{\rm (t)}$ twist. We also study the modular symmetry on such orbifold models. As an illustrating model, we examine the realization of quark masses and mixing angles.