论文标题
使用机器学习来校准风暴量表的概率指导,对警告系统中的恶劣天气危害
Using Machine Learning to Calibrate Storm-Scale Probabilistic Guidance of Severe Weather Hazards in the Warn-on-Forecast System
论文作者
论文摘要
国家海洋和大气管理局(NOAA)警告搜索(WOF)项目的主要目标是向人类预报员快速更新概率指导,以实现短期(例如0-3 h)恶劣天气预测。从对流模型预测的整体中最大化概率严重天气指导的有用性需要校准。在这项研究中,我们将使用上升气旋的简单方法与一系列机器学习(ML)算法进行比较,以校准WOFS严重的天气指导。 ML模型通常用于校准恶劣天气指导,因为它们利用多个变量并在复杂数据集中发现有用的模式。 \缩进我们的数据集包括每5分钟到2017 - 2019年NOAA危险天气测试床春季预测实验(81个日期)的WOF系统(WOFS)集合预测。使用一种新颖的集合风暴轨迹识别方法,我们从WOF预测中提取了三组预测指标:稳定状态变量,近态环境变量和集合风暴轨迹的形态属性。然后,我们训练了随机森林,增强梯度的树木和逻辑回归算法,以预测哪些WOFS 30分钟合奏风暴轨道将对应于龙卷风,严重的冰雹和/或严重的风报告。对于简单的方法,我们从每个集合风暴轨道上提取了超过阈值(调谐每个恶劣天气危险)的2-5公里上升螺旋(UH)的集合概率。这三种ML算法对所有三种危害都很好地区分了良好的区分,并且比基于UH的预测产生了更可靠的概率。总体而言,结果表明,基于ML的动态整体输出的校准可以改善短期,暴风雨规模的恶劣天气概率指导
A primary goal of the National Oceanic and Atmospheric Administration (NOAA) Warn-on-Forecast (WoF) project is to provide rapidly updating probabilistic guidance to human forecasters for short-term (e.g., 0-3 h) severe weather forecasts. Maximizing the usefulness of probabilistic severe weather guidance from an ensemble of convection-allowing model forecasts requires calibration. In this study, we compare the skill of a simple method using updraft helicity against a series of machine learning (ML) algorithms for calibrating WoFS severe weather guidance. ML models are often used to calibrate severe weather guidance since they leverage multiple variables and discover useful patterns in complex datasets. \indent Our dataset includes WoF System (WoFS) ensemble forecasts available every 5 minutes out to 150 min of lead time from the 2017-2019 NOAA Hazardous Weather Testbed Spring Forecasting Experiments (81 dates). Using a novel ensemble storm track identification method, we extracted three sets of predictors from the WoFS forecasts: intra-storm state variables, near-storm environment variables, and morphological attributes of the ensemble storm tracks. We then trained random forests, gradient-boosted trees, and logistic regression algorithms to predict which WoFS 30-min ensemble storm tracks will correspond to a tornado, severe hail, and/or severe wind report. For the simple method, we extracted the ensemble probability of 2-5 km updraft helicity (UH) exceeding a threshold (tuned per severe weather hazard) from each ensemble storm track. The three ML algorithms discriminated well for all three hazards and produced more reliable probabilities than the UH-based predictions. Overall, the results suggest that ML-based calibrations of dynamical ensemble output can improve short term, storm-scale severe weather probabilistic guidance