论文标题

无监督的陶土战士点云(SRG-net)的细分

Unsupervised Segmentation for Terracotta Warrior Point Cloud (SRG-Net)

论文作者

Hu, Yao, Geng, Guohua, Li, Kang, Zhou, Wei

论文摘要

Qinshihuang Mausoleum皇帝在Qinshihuang Mausoum遗址博物馆中的修复作品是由专家手工制作的,越来越多的陶土勇士队越来越多地使考古学家有效地恢复了Terracotta Warriors的挑战。我们希望将Terracotta Warriors的3D点云数据自动分割,并将片段数据存储在数据库中,以协助考古学家将实际片段与数据库中的片段匹配,这可能会导致较高的陶土战士的维修效率。此外,现有的3D神经网络研究主要集中于监督分类,聚类,无监督的表示和重建。很少有研究集中于无监督点云部分分割。在本文中,我们为陶土战士的3D点云提供了SRG-NET,以解决这些问题。首先,我们采用一种定制的种子种植算法来粗略细分点云。然后,我们提出一个有监督的细分和无监督的重建网络,以了解3D点云的特征。最后,我们使用改进方法将SRG算法与改进的CNN(卷积神经网络)相结合。该管道称为SRG-NET,旨在在Terracotta Warriors上执行细分任务。我们提出的SRG-NET通过测量准确性和延迟来评估Terracotta Warrior数据和Shapenet数据集的评估。实验结果表明,我们的SRG-NET优于最新方法。我们的代码可在https://github.com/hyoau/srg-net上找到。

The repairing work of terracotta warriors in Emperor Qinshihuang Mausoleum Site Museum is handcrafted by experts, and the increasing amounts of unearthed pieces of terracotta warriors make the archaeologists too challenging to conduct the restoration of terracotta warriors efficiently. We hope to segment the 3D point cloud data of the terracotta warriors automatically and store the fragment data in the database to assist the archaeologists in matching the actual fragments with the ones in the database, which could result in higher repairing efficiency of terracotta warriors. Moreover, the existing 3D neural network research is mainly focusing on supervised classification, clustering, unsupervised representation, and reconstruction. There are few pieces of researches concentrating on unsupervised point cloud part segmentation. In this paper, we present SRG-Net for 3D point clouds of terracotta warriors to address these problems. Firstly, we adopt a customized seed-region-growing algorithm to segment the point cloud coarsely. Then we present a supervised segmentation and unsupervised reconstruction networks to learn the characteristics of 3D point clouds. Finally, we combine the SRG algorithm with our improved CNN(convolution neural network) using a refinement method. This pipeline is called SRG-Net, which aims at conducting segmentation tasks on the terracotta warriors. Our proposed SRG-Net is evaluated on the terracotta warrior data and ShapeNet dataset by measuring the accuracy and the latency. The experimental results show that our SRG-Net outperforms the state-of-the-art methods. Our code is available at https://github.com/hyoau/SRG-Net.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源