论文标题

边缘辅助对联邦分析的民主化学习

Edge-assisted Democratized Learning Towards Federated Analytics

论文作者

Pandey, Shashi Raj, Nguyen, Minh N. H., Dang, Tri Nguyen, Tran, Nguyen H., Thar, Kyi, Han, Zhu, Hong, Choong Seon

论文摘要

最近对联合分析(FA)的看法允许分布式数据集的分析见解,它重新恢复了联合学习(FL)基础架构,以评估整个培训设备中模型性能的摘要。但是,FL的当前实现采用了具有有限范围的单个服务器 - 媒体客户端体系结构,这通常会导致概括较差的学习模型,即对现实世界应用程序处理新/看不见的数据的能力。此外,具有分布式计算平台的分层FL结构显示了不同聚合级别的模型性能不连贯。因此,我们需要设计一种强大的学习机制,而不是FL(i)(i)为FA释放一个可行的基础架构和(ii)培训具有更好概括能力的学习模型。在这项工作中,我们采用了小说的民主学习(DEM-AI)原则和设计来实现这些目标。首先,我们将拟议的边缘辅助的民主化学习机制(即边缘 - 统一)作为授权概括能力支持FA的实用框架展示了层次的学习结构。其次,我们通过利用分布式计算基础架构来验证边缘验证作为一种灵活的模型训练机制在区域中建立分布式控制和聚集方法。分布式边缘计算服务器构建区域模型,最大程度地减少通信负载,并确保分布式数据分析应用程序的可扩展性。为此,我们遵守了一种近乎最佳的双面多对匹配方法,以处理边缘数字中的组合约束,并通过优化了资源分配和多个服务器和设备之间的关联来解决快速知识获取。实际数据集的广泛仿真结果证明了所提出的方法的有效性。

A recent take towards Federated Analytics (FA), which allows analytical insights of distributed datasets, reuses the Federated Learning (FL) infrastructure to evaluate the summary of model performances across the training devices. However, the current realization of FL adopts single server-multiple client architecture with limited scope for FA, which often results in learning models with poor generalization, i.e., an ability to handle new/unseen data, for real-world applications. Moreover, a hierarchical FL structure with distributed computing platforms demonstrates incoherent model performances at different aggregation levels. Therefore, we need to design a robust learning mechanism than the FL that (i) unleashes a viable infrastructure for FA and (ii) trains learning models with better generalization capability. In this work, we adopt the novel democratized learning (Dem-AI) principles and designs to meet these objectives. Firstly, we show the hierarchical learning structure of the proposed edge-assisted democratized learning mechanism, namely Edge-DemLearn, as a practical framework to empower generalization capability in support of FA. Secondly, we validate Edge-DemLearn as a flexible model training mechanism to build a distributed control and aggregation methodology in regions by leveraging the distributed computing infrastructure. The distributed edge computing servers construct regional models, minimize the communication loads, and ensure distributed data analytic application's scalability. To that end, we adhere to a near-optimal two-sided many-to-one matching approach to handle the combinatorial constraints in Edge-DemLearn and solve it for fast knowledge acquisition with optimization of resource allocation and associations between multiple servers and devices. Extensive simulation results on real datasets demonstrate the effectiveness of the proposed methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源