论文标题
预测证实了与基于迁移的流行病学模型的共同19-19大流行的案例
Forecasting confirmed cases of the COVID-19 pandemic with a migration-based epidemiological model
论文作者
论文摘要
自从2020年的前几个月,它将其入侵到公众的日常生活以来,2019年史无前例的冠状病毒病(VOVID-19)仍然是对人类生活的威胁。预测,确认案件的规模对于国家和社区的规模很重要,对于有效的预防和控制政策非常重要,以便有效地策划了covid-19的范围。与2003年的SARS流行和2009年H1N1流感大流行不同,Covid-19具有独特的流行病学特征,在其传染性和回收的隔间中具有独特的流行病学特征。这促使我们制定了一种新的感染动态模型,以预测人类流动性网络中的Covid-19大流行,其称为Saucir-Model,从某种意义上说,新的分室模型通过将受感染状态的人的流动划分为无症状,病理感染但未得到的验证和确认和确认和确认的,并获得了基准的SIR模型。此外,我们在模型中采用人口流动的动态建模,以便可以有效地纳入空间效应。我们预测,从2月下旬至2020年5月上旬,在中国大陆和其他国家经历了严重感染的其他国家中,积累的确认案件的传播。将大流行的地理位置纳入了令人惊讶的良好协议与已发表的确认案件报告。与现有相似之处相比,数值分析验证了我们提出的索西尔模型的高度可预测性。提出的预测索西尔模型在Python中实现。 DASH(正在构建)也开发了基于Web的应用程序。
The unprecedented coronavirus disease 2019 (COVID-19) pandemic is still a worldwide threat to human life since its invasion into the daily lives of the public in the first several months of 2020. Predicting the size of confirmed cases is important for countries and communities to make proper prevention and control policies so as to effectively curb the spread of COVID-19. Different from the 2003 SARS epidemic and the worldwide 2009 H1N1 influenza pandemic, COVID-19 has unique epidemiological characteristics in its infectious and recovered compartments. This drives us to formulate a new infectious dynamic model for forecasting the COVID-19 pandemic within the human mobility network, named the SaucIR-model in the sense that the new compartmental model extends the benchmark SIR model by dividing the flow of people in the infected state into asymptomatic, pathologically infected but unconfirmed, and confirmed. Furthermore, we employ dynamic modeling of population flow in the model in order that spatial effects can be incorporated effectively. We forecast the spread of accumulated confirmed cases in some provinces of mainland China and other countries that experienced severe infection during the time period from late February to early May 2020. The novelty of incorporating the geographic spread of the pandemic leads to a surprisingly good agreement with published confirmed case reports. The numerical analysis validates the high degree of predictability of our proposed SaucIR model compared to existing resemblance. The proposed forecasting SaucIR model is implemented in Python. A web-based application is also developed by Dash (under construction).