论文标题

波功能中的非分析性和奇异性的存在以及看不见的三角电势的作用

The presence of non-analyticities and singularities in the wavefunction and the role of invisible delta potentials

论文作者

Munzenmayer, Jorge, Frydel, Derek

论文摘要

本文研究了参考文献中提出的建议。 [EPL,115(2016)60001]对于无限球形井模型中粒子的解决方案,如果是正方形的融合,则是一个物理上有效的解决方案,即使在奇异性的确切位置没有潜在的物理原因的确切位置,因此,差异必须是由距离隔开的距离,这是一个非局部现象。在这项工作中,我们更仔细地研究了这一说法。通过识别可发射的正方形集成溶液的正确微分方程并以Schroedinger方程的形式重写,我们推断出发散的波函数将由电位V(R)= -R Delta(R)引起,这是一种有吸引力的Delta电位。由于其奇特的形式以及它导致势能<v> = - 无穷大的事实,势V(r)和与之相关的发散波函数在物理上没有意义。

This article examines the suggestion made in Ref. [EPL, 115 (2016) 60001] that a solution to a particle in an infinite spherical well model, if it is square-integrable, is a physically valid solution, even if at the precise location of the singularity there is no underlying physical cause, therefore, the divergence would have to be a nonlocal phenomenon caused by confining walls at a distance. In this work we examine this claim more carefully. By identifying the correct differential equation for a divergent square-integrable solution and rewriting it in the form of the Schroedinger equation, we infer that the divergent wavefunction would be caused by the potential V(r)=-r delta(r), which is a kind of attractive delta potential. Because of its peculiar form and the fact that it leads to a divergent potential energy <V> = - infinity, the potential V(r) and the divergent wavefunction associated with it are not physically meaningful.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源