论文标题

流形学习的传染动力学

Contagion Dynamics for Manifold Learning

论文作者

Mahler, Barbara I.

论文摘要

传染图在阈值传染中利用激活时间,以将高维欧几里得空间中的向量分配给网络节点。传染图的图像的点云既反映了网络基础的结构,又反映了传染的传播行为。从直觉上讲,这种点云显示出网络基础结构的特征,如果传染沿该结构扩散,则观察结果表明传染图作为可行的多种流形学习技术。我们在许多不同的现实世界和合成数据集上测试传染图作为一种流形学习工具,并将其性能与Isomap的性能进行了比较,Isomap是最著名的多种流形学习算法之一。我们发现,在某些条件下,传染图能够可靠地检测到噪声数据中的基本歧管结构,而由于噪声诱导的误差,ISOMAP失败了。这将传染图作为流形学习技术。

Contagion maps exploit activation times in threshold contagions to assign vectors in high-dimensional Euclidean space to the nodes of a network. A point cloud that is the image of a contagion map reflects both the structure underlying the network and the spreading behaviour of the contagion on it. Intuitively, such a point cloud exhibits features of the network's underlying structure if the contagion spreads along that structure, an observation which suggests contagion maps as a viable manifold-learning technique. We test contagion maps as a manifold-learning tool on a number of different real-world and synthetic data sets, and we compare their performance to that of Isomap, one of the most well-known manifold-learning algorithms. We find that, under certain conditions, contagion maps are able to reliably detect underlying manifold structure in noisy data, while Isomap fails due to noise-induced error. This consolidates contagion maps as a technique for manifold learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源