论文标题

凸面船体滚动距离的距离猜想和非对格的边界

The Convex Hull Swampland Distance Conjecture and Bounds on Non-geodesics

论文作者

Calderón-Infante, José, Uranga, Angel M., Valenzuela, Irene

论文摘要

Swampland距离的猜想(SDC)限制了标量在有效的野外理论中可以遍历的地球距离,因为它们在模量空间中以无限距离接近点。我们建议,当应用于标量电势的有效理论中的光场子集合时,SDC限制了沿电势山谷的轨迹允许的非晶格的数量。这对于确保SDC作为在RG流动的任何能量尺度上的有效滚动量标准的一致性是必要的。我们在双曲空间类型及其产品的模量空间中简单地描述了这种效果,并获得了关键轨迹,从而导致最大的非晶格与SDC兼容。我们通过将SDC表示为对轨迹的新凸面约束来恢复和概括这些结果,从而以标量电荷与质量比的质量比类似于标量弱重力猜想来表征塔。我们表明,关于模量空间中无穷大附近的渐近标量兼容的渐近标量潜力的最新结果精确地意识到了这些关键数量的非晶格数量。我们的结果表明,弦理论通量压缩导致最通用的电势,从而使潜在山谷的最大非晶格性在遵守沿它们的SDC的同时。

The Swampland Distance Conjecture (SDC) restricts the geodesic distances that scalars can traverse in effective field theories as they approach points at infinite distance in moduli space. We propose that, when applied to the subset of light fields in effective theories with scalar potentials, the SDC restricts the amount of non-geodesicity allowed for trajectories along valleys of the potential. This is necessary to ensure consistency of the SDC as a valid swampland criterium at any energy scale across the RG flow. We provide a simple description of this effect in moduli space of hyperbolic space type, and products thereof, and obtain critical trajectories which lead to maximum non-geodesicity compatible with the SDC. We recover and generalize these results by expressing the SDC as a new Convex Hull constraint on trajectories, characterizing towers by their scalar charge to mass ratio in analogy to the Scalar Weak Gravity Conjecture. We show that recent results on the asymptotic scalar potential of flux compatifications near infinity in moduli space precisely realize these critical amounts of non-geodesicity. Our results suggest that string theory flux compactifications lead to the most generic potentials allowing for maximum non-geodesicity of the potential valleys while respecting the SDC along them.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源