论文标题
在Swampland Coobordism上,猜想和非亚洲二元性群体
On the Swampland Cobordism Conjecture and Non-Abelian Duality Groups
论文作者
论文摘要
我们研究了McNamara和Vafa的Coubordism猜想,这断言Bordism的量子重力是微不足道的。在IIB型字符串理论的上下文中,这在一个圆圈上被压缩,这预测了D7-branes的存在。另一方面,IIB二元组的非亚洲结构$ sl(2,\ mathbb {z})$意味着存在额外的$ [P,Q] $ 7-BRANES。我们发现,相反,这些附加信息是由椭圆曲线模量空间上的封闭路径的空间参数化IIB轴二元型的不同值的。此描述允许恢复7个Branes的非亚伯辫子统计的完整结构。将Coobordism猜想与Ooguri和Vafa的较早的Swampland猜想相结合,我们认为只有某些一致性子组$γ\ subset sl(2,\ Mathbb {z})指定零模块化属的属属在8D f theory Vacua中才能出现。这导致了允许的Mordell-Weil扭转组的成功预测,用于8D理论真空吸尘器。
We study the cobordism conjecture of McNamara and Vafa which asserts that the bordism group of quantum gravity is trivial. In the context of type IIB string theory compactified on a circle, this predicts the presence of D7-branes. On the other hand, the non-Abelian structure of the IIB duality group $SL(2,\mathbb{Z})$ implies the existence of additional $[p,q]$ 7-branes. We find that this additional information is instead captured by the space of closed paths on the moduli space of elliptic curves parameterizing distinct values of the type IIB axio-dilaton. This description allows to recover the full structure of non-Abelian braid statistics for 7-branes. Combining the cobordism conjecture with an earlier Swampland conjecture by Ooguri and Vafa, we argue that only certain congruence subgroups $Γ\subset SL(2,\mathbb{Z})$ specifying genus zero modular curves can appear in 8D F-theory vacua. This leads to a successful prediction for the allowed Mordell-Weil torsion groups for 8D F-theory vacua.