论文标题
一类非边界域上非线性非本地非局部差异算子的比较原理
Comparison principles for a class of nonlinear non-local integro-differential operators on unbounded domains
论文作者
论文摘要
我们介绍了非线性非本地内部界面差异操作员$ p的比较和最大原则的扩展, -f(\ cdot,\ cdot,u,ju)上的$ω\ times(0,t] $。在这里,我们考虑:无限的空间域$ω\ subset \ subset \ subset \ mathbb {r}^n $,$ t> 0 $; t> 0 $; t> 0 $;足够常规的二阶二阶parabolic parabolic parabolic parabolic parabolic parabolic dixial dixial duffial $ l $ l $ l $ $ linnear $ f; (0,t])\ times \ mathbb {r}^2 \ to \ mathbb {r} $;
We present extensions of the comparison and maximum principles available for nonlinear non-local integro-differential operators $P:\mathcal{C}^{2,1}(Ω\times (0,T])\times L^\infty (Ω\times (0,T])\to\mathbb{R}$, of the form $P[u] = L[u] -f(\cdot ,\cdot ,u,Ju)$ on $Ω\times (0,T]$. Here, we consider: unbounded spatial domains $Ω\subset \mathbb{R}^n$, with $T>0$; sufficiently regular second order linear parabolic partial differential operators $L$; sufficiently regular semi-linear terms $f:(Ω\times (0,T]) \times \mathbb{R}^2\to\mathbb{R}$; and the non-local term $Ju= \int_{Ω}ϕ(x-y)u(y,t)dy$, with $ϕ$ in a class of non-negative sufficiently summable kernels. We also provide examples illustrating the limitations and applicability of our results.