论文标题

深入加固学习,以控制连接传热,并应用于工件冷却

Deep reinforcement learning for the control of conjugate heat transfer with application to workpiece cooling

论文作者

Hachem, Elie, Ghraieb, Hassan, Viquerat, Jonathan, Larcher, Aurélien, Meliga, Philippe

论文摘要

这项研究衡量了深钢筋学习(DRL)技术的能力,以帮助控制由耦合的Navier(stokes and-Stokes and Heatorquations)控制的共轭传热系统。它使用了近端策略优化(PPO)算法的小说,“退化”版本,该算法旨在用于神经网络要学到的最佳策略不取决于状态的情况,这是优化和开放环控制问题的情况所致。通过内部稳定的有限元元素环境,将馈送到神经网络的数值奖励结合了管理方程,浸入式体积方法和多组分各向异性网状筛网适应的内部稳定有限元元素环境。在两个和三个维度中的几个自然和强迫对流的测试案例被用作开发方法的测试床。该方法成功地减轻了自然对流在二维,差异加热的方腔中的热传递增强,并通过侧壁温度的零件恒定波动控制。它还证明能够在撞击冷却下的两个和三维热工件的表面上改善温度的均匀性。解决了各种情况,其中相对于固定工件位置,对多个冷空气注射器的位置进行了优化。数值框架的灵活性使得也可以解决逆问题,即,相对于固定的喷油器分布来优化工件位置。获得的结果展示了该方法对实际有意义的计算流体动力学(CFD)结合传热系统的黑盒优化的潜力。

This research gauges the ability of deep reinforcement learning (DRL) techniques to assist the control of conjugate heat transfer systems governed by the coupled Navier--Stokes and heat equations. It uses a novel, "degenerate" version of the proximal policy optimization (PPO) algorithm, intended for situations where the optimal policy to be learnt by a neural network does not depend on state, as is notably the case in optimization and open-loop control problems. The numerical reward fed to the neural network is computed with an in-house stabilized finite elements environment combining variational multi-scale (VMS) modeling of the governing equations, immerse volume method, and multi-component anisotropic mesh adaptation. Several test cases of natural and forced convection in two and three dimensions are used as testbed for developing the methodology. The approach successfully alleviates the natural convection induced enhancement of heat transfer in a two-dimensional, differentially heated square cavity controlled by piece-wise constant fluctuations of the sidewall temperature. It also proves capable of improving the homogeneity of temperature across the surface of two and three-dimensional hot workpieces under impingement cooling. Various cases are tackled, in which the position of multiple cold air injectors is optimized relative to a fixed workpiece position. The flexibility of the numerical framework makes it tractable to solve also the inverse problem, i.e., to optimize the workpiece position relative to a fixed injector distribution. The obtained results showcase the potential of the method for black-box optimization of practically meaningful computational fluid dynamics (CFD) conjugate heat transfer systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源