论文标题
多模式依赖类型理论
Multimodal Dependent Type Theory
论文作者
论文摘要
我们介绍了MTT,这是一种支持多种方式的依赖类型理论。 MTT通过模式理论进行参数化,该模式理论指定了它们之间的模式,模式和转换的集合。我们表明,模式理论的不同选择使我们能够在许多模态情况下使用相同的类型理论来计算和原因,包括守护的递归,公理凝聚力和参数量化。我们从先前工作的递归和公理内聚会中重现了示例,从而证明MTT构成了一种简单可用的语法,其实例化的直觉与先前的手工制作的模态类型理论相对应。在某些情况下,将MTT实例化到特定情况下发掘了以前未知的类型理论,可改善先前的系统。最后,我们调查了MTT的元病。我们通过扩展最近的类型理论胶合技术来证明MTT的一致性并建立了规范性。这些结果不论选择模式理论的选择都构成依据,因此适用于多种模态情况。
We introduce MTT, a dependent type theory which supports multiple modalities. MTT is parametrized by a mode theory which specifies a collection of modes, modalities, and transformations between them. We show that different choices of mode theory allow us to use the same type theory to compute and reason in many modal situations, including guarded recursion, axiomatic cohesion, and parametric quantification. We reproduce examples from prior work in guarded recursion and axiomatic cohesion, thereby demonstrating that MTT constitutes a simple and usable syntax whose instantiations intuitively correspond to previous handcrafted modal type theories. In some cases, instantiating MTT to a particular situation unearths a previously unknown type theory that improves upon prior systems. Finally, we investigate the metatheory of MTT. We prove the consistency of MTT and establish canonicity through an extension of recent type-theoretic gluing techniques. These results hold irrespective of the choice of mode theory, and thus apply to a wide variety of modal situations.