论文标题
Magritte,一个现代的软件库,用于3D辐射转移:II。自适应射线追踪,网状结构和还原
Magritte, a modern software library for 3D radiative transfer: II. Adaptive ray-tracing, mesh construction and reduction
论文作者
论文摘要
辐射转移是一个众所周知的困难和计算要求的问题。然而,它几乎是所有天体物理和宇宙学模拟中必不可少的成分。选择适当的离散方案是模拟的关键部分,因为它不仅确定了模型的直接内存成本,而且很大程度上决定了计算成本和可实现的准确性。在本文中,我们展示了定向离散方案以及空间模型网格的适当选择可以帮助减轻计算成本,同时在很大程度上保留了准确性。首先,我们讨论了在3D辐射传输库Magritte中实现的自适应射线追踪方案,该方案将光线适应到空间网格中,并基于HealPix使用层次定向离散化。其次,我们演示了如何使用免费和开源软件库GMSH来生成可以轻松为Magritte量身定制的高质量网格。特别是,我们展示了如何使用网格的局部元素大小分布来优化分析和数值定义模型的采样。此外,我们表明,当使用流体动力学模拟的输出作为辐射传递模拟的输入时,通常可以通过数量级来减少输入模型中的元素数量,而不会在辐射场中明显丧失准确性。我们对基于自适应网格细化(AMR)以及基于平滑粒子流体动力学(SPH)数据的两个模型产生的两个模型进行了两个模型,以证明这一点。
Radiative transfer is a notoriously difficult and computationally demanding problem. Yet, it is an indispensable ingredient in nearly all astrophysical and cosmological simulations. Choosing an appropriate discretization scheme is a crucial part of the simulation, since it not only determines the direct memory cost of the model but also largely determines the computational cost and the achievable accuracy. In this paper, we show how an appropriate choice of directional discretization scheme as well as spatial model mesh can help alleviate the computational cost, while largely retaining the accuracy. First, we discuss the adaptive ray-tracing scheme implemented in our 3D radiative transfer library Magritte, that adapts the rays to the spatial mesh and uses a hierarchical directional discretization based on HEALPix. Second, we demonstrate how the free and open-source software library Gmsh can be used to generate high quality meshes that can be easily tailored for Magritte. In particular, we show how the local element size distribution of the mesh can be used to optimise the sampling of both analytically and numerically defined models. Furthermore, we show that when using the output of hydrodynamics simulations as input for a radiative transfer simulation, the number of elements in the input model can often be reduced by an order of magnitude, without significant loss of accuracy in the radiation field. We demonstrate this for two models based on a hierarchical octree mesh resulting from adaptive mesh refinement (AMR), as well as two models based on smoothed-particle hydrodynamics (SPH) data.