论文标题
锚定-STFT和GNAA:与对抗性数据扩展技术的扩展,用于解码神经信号
Anchored-STFT and GNAA: An extension of STFT in conjunction with an adversarial data augmentation technique for the decoding of neural signals
论文作者
论文摘要
大脑计算机界面(BCIS)通过将大脑活动转化为控制命令来实现人与机器之间的通信。脑电图(EEG)信号是非侵入性BCI应用中最常用的脑信号之一,但通常被噪声污染。因此,有意义地隐藏了脑电图信号的有意义的模式。最先进的深度学习算法成功地学习隐藏的,有意义的模式。但是,提出的投入的质量和数量是关键的。在这里,我们提出了一种新颖的功能提取方法,称为锚定短时傅立叶变换(锚定-Stft),这是STFT的高级版本,因为它可以最大程度地减少STFT提供的时间和光谱分辨率之间的权衡。此外,我们提出了一种新型的增强方法,称为梯度规范对抗增强(GNAA)。 GNAA不仅是一种增强方法,而且还用于利用脑电图数据中的对抗输入,这不仅提高了分类准确性,还可以增强分类器的鲁棒性。此外,我们还提出了一种新的CNN体系结构,即跳过网络,以分类EEG信号。拟议的管道在BCI竞争II数据集III和BCI竞争IV数据集2B上的平均分类精度分别优于所有最新方法,平均分类精度为90.7%和89.54%。
Brain-computer interfaces (BCIs) enable communication between humans and machines by translating brain activity into control commands. Electroencephalography (EEG) signals are one of the most used brain signals in non-invasive BCI applications but are often contaminated with noise. Therefore, it is possible that meaningful patterns for classifying EEG signals are deeply hidden. State-of-the-art deep-learning algorithms are successful in learning hidden, meaningful patterns. However, the quality and the quantity of the presented inputs is pivotal. Here, we propose a novel feature extraction method called anchored Short Time Fourier Transform (anchored-STFT), which is an advanced version of STFT, as it minimizes the trade-off between temporal and spectral resolution presented by STFT. In addition, we propose a novel augmentation method, called gradient norm adversarial augmentation (GNAA). GNAA is not only an augmentation method but is also used to harness adversarial inputs in EEG data, which not only improves the classification accuracy but also enhances the robustness of the classifier. In addition, we also propose a new CNN architecture, namely Skip-Net, for the classification of EEG signals. The proposed pipeline outperforms all state-of-the-art methods and yields an average classification accuracy of 90.7 % and 89.54 % on BCI competition II dataset III and BCI competition IV dataset 2b, respectively.