论文标题

可推广人员重新识别的元批订单标准化

Meta Batch-Instance Normalization for Generalizable Person Re-Identification

论文作者

Choi, Seokeon, Kim, Taekyung, Jeong, Minki, Park, Hyoungseob, Kim, Changick

论文摘要

尽管受监督的人重新识别(RE-ID)方法表现出了令人印象深刻的表现,但他们对看不见的领域的概括能力差。因此,可推广的重新ID最近引起了人们日益增长的关注。许多现有的方法已经采用实例归一化技术来减少样式变化,但是无法避免判别信息的丢失。在本文中,我们提出了一个新型的可推广重新ID框架,称为Meta批次施加归一化(Metabin)。我们的主要思想是通过事先模拟元学习管道中的失败的概括场景来概括归一化层。为此,我们将可学习的批处理标准化层与元学习结合在一起,并研究由批处理和实例标准化层引起的挑战性案例。此外,我们通过元训练损失多样化虚拟模拟,并伴随着循环内部升级方式,以提高概括能力。毕竟,Metabin框架可以防止我们的模型过度拟合给定的源样式,并提高了在没有其他数据增强或复杂网络设计的情况下看不见的域的概括能力。广泛的实验结果表明,我们的模型优于大规模域概括的最先进方法重新ID基准和跨域重新ID问题。源代码可在以下网址获得:https://github.com/bismex/metabin。

Although supervised person re-identification (Re-ID) methods have shown impressive performance, they suffer from a poor generalization capability on unseen domains. Therefore, generalizable Re-ID has recently attracted growing attention. Many existing methods have employed an instance normalization technique to reduce style variations, but the loss of discriminative information could not be avoided. In this paper, we propose a novel generalizable Re-ID framework, named Meta Batch-Instance Normalization (MetaBIN). Our main idea is to generalize normalization layers by simulating unsuccessful generalization scenarios beforehand in the meta-learning pipeline. To this end, we combine learnable batch-instance normalization layers with meta-learning and investigate the challenging cases caused by both batch and instance normalization layers. Moreover, we diversify the virtual simulations via our meta-train loss accompanied by a cyclic inner-updating manner to boost generalization capability. After all, the MetaBIN framework prevents our model from overfitting to the given source styles and improves the generalization capability to unseen domains without additional data augmentation or complicated network design. Extensive experimental results show that our model outperforms the state-of-the-art methods on the large-scale domain generalization Re-ID benchmark and the cross-domain Re-ID problem. The source code is available at: https://github.com/bismex/MetaBIN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源