论文标题
使用修改的动态迭代PCA识别错误中的错误ARX模型
Identification of Errors-in-Variables ARX Models Using Modified Dynamic Iterative PCA
论文作者
论文摘要
具有外源输入(ARX)的自回旋模型的识别是系统识别中的经典问题。本文考虑了变量中的错误(EIV)ARX模型识别问题,其中输入测量也被噪声损坏。最近提出的DIPCA技术解决了EIV识别问题,但仅适用于白色测量误差。我们根据修改的动态迭代主成分分析(DIPCA)方法提出了一种新颖的识别算法,用于识别单输入,单输出(SISO)系统的EIV-ARX模型,其中输出测量与与ARX模型一致的有色噪声损坏。大多数现有方法都采用重要参数,例如要知道的输入输出订单,延迟或噪声维护。这项工作的新颖性在于误差方差,过程顺序,延迟和模型参数的联合估计。用于以理论上严格的方式获得所有这些参数的中心思想是基于使用适当的误差协方差矩阵转换滞后测量值的中心思想,该测量是使用估计的误差方差和模型参数获得的。对两个系统进行了模拟研究,以证明所提出算法的功效。
Identification of autoregressive models with exogenous input (ARX) is a classical problem in system identification. This article considers the errors-in-variables (EIV) ARX model identification problem, where input measurements are also corrupted with noise. The recently proposed DIPCA technique solves the EIV identification problem but is only applicable to white measurement errors. We propose a novel identification algorithm based on a modified Dynamic Iterative Principal Components Analysis (DIPCA) approach for identifying the EIV-ARX model for single-input, single-output (SISO) systems where the output measurements are corrupted with coloured noise consistent with the ARX model. Most of the existing methods assume important parameters like input-output orders, delay, or noise-variances to be known. This work's novelty lies in the joint estimation of error variances, process order, delay, and model parameters. The central idea used to obtain all these parameters in a theoretically rigorous manner is based on transforming the lagged measurements using the appropriate error covariance matrix, which is obtained using estimated error variances and model parameters. Simulation studies on two systems are presented to demonstrate the efficacy of the proposed algorithm.