论文标题
在旋转波近似超越旋转波的两种模式约瑟夫森电路中的侧带过渡
Sideband transitions in a two-mode Josephson circuit driven beyond the rotating wave approximation
论文作者
论文摘要
定期及时驱动量子系统在量子状态的相干控制中起着至关重要的作用。旋转波近似(RWA)是用于弱且几乎共振驱动场的良好近似技术。但是,这些实验有时需要大量的失沟和强大的驾驶场,而RWA可能无法保持。在这项工作中,我们在实验,数字和分析上探索强有力的两种模式约瑟夫森电路在强驾驶和大型失调方面。具体而言,我们研究了通过驱动两光子的边带跃迁引起的两种模式之间的光束切开仪和两种模式挤压相互作用。使用数值模拟,我们观察到RWA无法正确捕获边带过渡速率的幅度。我们使用基于扰动校正的分析模型来验证这一发现。我们发现,所研究的政权中RWA的分解并不会导致质量不同,而是在较高的驱动强度下给出的结果与RWA理论相同,从而提高了耦合率与人们的预测相比。与载体过渡案例相比,这是一个有趣的后果,在载体过渡案例中,RWA的分解导致量子状态的质量不同。我们的工作提供了对RWA以外的时间驱动系统的行为的洞察力。我们还提供了一个强大的理论框架,用于将这些发现包括在电路量子电动力学中的量子方案的计算和校准中。
Driving quantum systems periodically in time plays an essential role in the coherent control of quantum states. The rotating wave approximation (RWA) is a good approximation technique for weak and nearly-resonance driven fields. However, these experiments sometimes require large detuning and strong driving fields, for which the RWA may not hold. In this work, we experimentally, numerically, and analytically explore strongly driven two-mode Josephson circuits in the regime of strong driving and large detuning. Specifically, we investigate beam-splitter and two-mode squeezing interaction between the two modes induced by driving a two-photon sideband transition. Using numerical simulations, we observe that the RWA is unable to correctly capture the amplitude of the sideband transition rates. We verify this finding using an analytical model that is based on perturbative corrections. We find that the breakdown of the RWA in the regime studied does not lead to qualitatively different dynamics, but gives the same results as the RWA theory at higher drive strengths, enhancing the coupling rates compared to what one would predict. This is an interesting consequence compared to the carrier transition case, where the breakdown of the RWA results in qualitatively different time evolution of the quantum state. Our work provides an insight into the behavior of time-periodically driven systems beyond the RWA. We also provide a robust theoretical framework for including these findings in the calculation and calibration of quantum protocols in circuit quantum electrodynamics.