论文标题
用于修改学习的预测案例控制设计
Predictive case control designs for modification learning
论文作者
论文摘要
可以使用源数据集开发临床结果的预测模型,并应用于新设置。在新设置中,要模型外部验证和模型更新,一个过程是模型修改学习,涉及重新校准总体预测以及修改个体功能效应的双重目标。修改学习通常需要从新环境中收集足够的真实结果标签样本,这通常是一个昂贵且耗时的过程,因为它涉及人类临床专家的抽象。为了减轻此类数据收集的抽象负担,我们根据原始模型得分及其相关结果预测提出了一类设计。我们提供数学上的理由,即一般的预测分数抽样类别导致有效样本进行分析。然后,我们专门将注意力集中在我们称为预测案例控制(PCC)采样的分层抽样过程上,该采样允许与简单的随机抽样(SRS)相比,以较小的样本量实现双重修改学习目标。 PCC采样有意地超出主体的分数,我们建议使用D-急需和二元熵信息功能来汇总样本信息。为了在PCC类中进行设计评估,我们提供了一个计算框架,以估计和可视化所提出的信息函数的经验响应表面。我们证明了通过蒙特卡洛模拟使用PCC设计进行修饰学习的好处。最后,使用放射学报告来自腰部成像的数据以及流行病学的报告(LIRE)研究,我们说明了PCC在新的结果标签抽象中的应用,以及随后在成像方式中进行的修改学习。
Prediction models for clinical outcomes may be developed using a source dataset and additionally applied to new settings. Towards model external validation and model updating in the new setting, one procedure is model modification learning that involves the dual goals of recalibrating overall predictions as well as revising individual feature effects. Modification learning generally requires the collection of an adequate sample of true outcome labels from the new setting, which is frequently an expensive and time-consuming process, as it involves abstraction by human clinical experts. To reduce the abstraction burden for such new data collection, we propose a class of designs based on original model scores and their associated outcome predictions. We provide mathematical justification that the general predictive score sampling class results in valid samples for analysis. Then, we focus attention specifically on a stratified sampling procedure that we call predictive case control (PCC) sampling, which allows the dual modification learning goals to be achieved at a smaller sample size compared to simple random sampling (SRS). PCC sampling intentionally over-represents subjects with informative scores, where we suggest using the D-optimality and Binary Entropy information functions to summarize sample information. For design evaluation within the PCC class, we provide a computational framework to estimate and visualize empirical response surfaces of the proposed information functions. We demonstrate the benefit of using PCC designs for modification learning, relative to SRS, through Monte Carlo simulation. Finally, using radiology report data from the Lumbar Imaging with Reporting of Epidemiology (LIRE) study, we illustrate the application of PCC for new outcome label abstraction and subsequent modification learning across imaging modalities.