论文标题

变分离散行动理论的基础

Foundations of the Variational Discrete Action Theory

论文作者

Cheng, Zhengqian, Marianetti, Chris A.

论文摘要

变分波函数和格林的功能是解决量子哈密顿量的两个重要范式,每个范围都有自己的优势。在这里,我们详细介绍了分散行动理论(VDAT),该理论利用了这两种范式的优势,以大致解决量子哈密顿量的基态。 VDAT由两个中央组成部分组成:顺序产物密度矩阵(SPD)ANSATZ和与SPD相关的离散作用。 SPD是一个受猪肉分解启发的变异ANSATZ,其特征是整数$ \ MATHCAL {N} $,除了$ \ Mathcal {n} = \ infty $的确切解决方案外,还恢复了许多众所周知的变分波函数。离散作用描述了有效整数时间演变相对于SPD的所有动态信息。我们将路径积分概括为整数时间形式主义,该整数时间形式主义将整数时间中的动态相关函数转换为复合空间中的静态相关函数。我们还将通常的多体绿色功能形式概括到整数时间,从而导致类似但独特的数学结构,从而产生了生成功能,dyson方程和伯特 - α-盐方程的整数时间版本。我们证明,可以通过求和有限的图表来证明SPD可以在多频带安德森杂质模型(AIM)中进行精确评估。对于多频段哈伯德模型,我们证明了自洽的规范离散作用近似(SCDA),这是动态平均场理论的整数时间类似物,可以准确地评估$ d = \ infty $的SPD。 SCDA中的VDAT提供了一种有效但可靠的方法来捕获量子晶格模型的局部物理,该物理将对强相关的电子材料具有广泛的应用。更一般而言,VDAT应该在物理学中的各种多体问题中找到应用。

Variational wave functions and Green's functions are two important paradigms for solving quantum Hamiltonians, each having their own advantages. Here we detail the Variational Discrete Action Theory (VDAT), which exploits the advantages of both paradigms in order to approximately solve the ground state of quantum Hamiltonians. VDAT consists of two central components: the sequential product density matrix (SPD) ansatz and a discrete action associated with the SPD. The SPD is a variational ansatz inspired by the Trotter decomposition and characterized by an integer $\mathcal{N}$, recovering many well known variational wave functions, in addition to the exact solution for $\mathcal{N}=\infty$. The discrete action describes all dynamical information of an effective integer time evolution with respect to the SPD. We generalize the path integral to our integer time formalism, which converts a dynamic correlation function in integer time to a static correlation function in a compound space. We also generalize the usual many-body Green's function formalism to integer time, which results in analogous but distinct mathematical structures, yielding integer time versions of the generating functional, Dyson equation, and Bethe-Salpeter equation. We prove that the SPD can be exactly evaluated in the multi-band Anderson impurity model (AIM) by summing a finite number of diagrams. For the multi-band Hubbard model, we prove that the self-consistent canonical discrete action approximation (SCDA), which is the integer time analogue of the dynamical mean-field theory, exactly evaluates the SPD for $d=\infty$. VDAT within the SCDA provides an efficient yet reliable method for capturing the local physics of quantum lattice models, which will have broad applications for strongly correlated electron materials. More generally, VDAT should find applications in various many-body problems in physics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源