论文标题
连续介质中地震波方程的分析和数值解
Analytic and numerical solutions to the seismic wave equation in continuous media
论文作者
论文摘要
本文介绍了合成地震脉冲的数学建模的两种方法,以及它们之间的比较。首先,在二维笛卡尔坐标中开发了一个新的分析模型。结合到足够对称性的初始条件,这为随后的数值方法的有效性提供了宝贵的检查。找到了特定的初始条件,该条件允许新的封闭式解决方案。然后提出了一个数值方案,该方案结合了位移组件和波速参数的光谱(傅立叶)表示,第四阶runge-kutta集成方法以及一个吸收的边界层。在新软件实现中,在适当的增强性能桌面硬件上并行解决了所得的大型微分方程系统。这为各向同性介质内的波的转发建模提供了一种替代方法,该方法是有效的,并根据建模地震结构的快速而灵活的发展量身定制,例如,浅层深度环境应用。提出了分析解决方案和数值方案的视觉比较。
This paper presents two approaches to mathematical modelling of a synthetic seismic pulse, and a comparison between them. First, a new analytical model is developed in two-dimensional Cartesian coordinates. Combined with an initial condition of sufficient symmetry, this provides a valuable check for the validity of the numerical method that follows. A particular initial condition is found which allows for a new closed-form solution. A numerical scheme is then presented which combines a spectral (Fourier) representation for displacement components and wave-speed parameters, a fourth order Runge-Kutta integration method, and an absorbing boundary layer. The resulting large system of differential equations is solved in parallel on suitable enhanced performance desktop hardware in a new software implementation. This provides an alternative approach to forward modelling of waves within isotropic media which is efficient, and tailored to rapid and flexible developments in modelling seismic structure, for example, shallow depth environmental applications. Visual comparisons of the analytic solution and the numerical scheme are presented.