论文标题
在标准真实投影空间的符号填充物上
On the symplectic fillings of standard real projective spaces
论文作者
论文摘要
我们以几何方式证明,在尺寸$ 2N-1 $的真实投影空间上的标准触点结构不适合$ n \ ge 3 $和奇数。我们还证明,对于所有$ n $,这些接触结构的半阳性填充物是简单地连接的。最后,我们给出了Eliashberg-loer-mcduff定理的另一个证明,介绍了$(2N-1)$ - 尺寸范围的标准接触结构的互性非球面填充物的差异类型。
We prove, in a geometric way, that the standard contact structure on the real projective space of dimension $2n-1$ is not Liouville fillable for $n \ge 3$ and odd. We also prove that, for all $n$, semipositive fillings of those contact structures are simply connected. Finally we give yet another proof of the Eliashberg-Floer-McDuff theorem on the diffeomorphism type of the symplectically aspherical fillings of the standard contact structure on the $(2n-1)$-dimensional sphere.