论文标题

保守的kardar-parisi-zhang方程:淬火障碍在确定普遍性中的作用

Conserved Kardar-Parisi-Zhang equation: Role of quenched disorder in determining universality

论文作者

Mukherjee, Sudip

论文摘要

我们研究了随机驱动的保守的Kardar-Parisi-Zhang(CKPZ)方程,并具有淬火性疾病。发现短距离淬灭疾病是对纯CKPZ方程在一个维度上的相关扰动,结果,与纯CKPZ方程不同的新通用类别似乎出现了。在较高的维度下,淬火障碍事实证明无法影响普遍的缩放。这会导致线性理论给出渐近长波长缩放,该场景与纯CKPZ方程相同。对于足够长的猝灭疾病,即使在更高的维度下,普遍的缩放也会受到淬火障碍的影响。

We study the stochastically driven conserved Kardar-Parisi-Zhang (CKPZ) equation with quenched disorders. Short-ranged quenched disorders is found to be a relevant perturbation on the pure CKPZ equation at one dimension, and as a result, a new universality class different from pure CKPZ equation appears to emerge. At higher dimensions, quenched disorder turns out to be ineffective to influence the universal scaling. This results in the asymptotic long wavelength scaling to be given by the linear theory, a scenario identical with the pure CKPZ equation. For sufficiently long-ranged quenched disorders, the universal scaling is impacted by the quenched disorder even at higher dimensions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源