论文标题
限制和模量锁定爱丽丝字符串和单孔
Confinement and moduli locking of Alice strings and monopoles
论文作者
论文摘要
我们认为,当围绕弦的非平凡aharonov-bohm(AB)阶段接收到弦乐的阶段时,字符串(涡旋)和单极会被限制。我们通过引入带电的Doublet标量标量字段,在爱丽丝字符串周围收到非平凡的AB阶段,在$ SU(2)\ Times U(2)\ Times U(1)$量表理论中,带有带电的三重态复杂标量场。爱丽丝字符串带有半$ u(1)$磁通量和$ 1/4 $ $ $ $ $ $ $ $ $ $ $ $ $ su(2)。在没有双重vev的情况下,该字符串不局限于$ su(2)$磁通量可以通过弦周围的AB相检测到的$ SU(2)$磁通量。当Doublet场发展VEV时,我们称之为两种阶段,我们称之为脱合和限制的阶段。当在解义阶段中存在单个爱丽丝字符串时,将$ u(1)$模量锁定(散装solk-soliton oduli锁定)。在狭窄的阶段中,爱丽丝字符串不可避免地被我们称为AB缺陷的域墙附着,并限制在反爱丽丝字符串或另一个带有相同$ su(2)$通量的爱丽丝字符串。根据合作伙伴,两对歼灭或形成一个稳定的双线爱丽丝字符串,核心内有$ su(2)$磁通量,其颜色无法通过AB阶段在大距离处检测到,这意味着“颜色”限制。该理论还接受了稳定的Abrikosov-Nielsen-Olesen弦,在没有Doublet Vevs的情况下,$ {\ Mathbb Z} _2 $字符串,并且在Doublet Vevs存在的情况下,每个弦都陷入了两个Alice字符串。该理论中的单极可以用作$ u(1)$模量扭曲的封闭的爱丽丝字符串,我们证明,使用Doublet Vevs,单孔也仅限于单极电荷的单极膜中。
We argue that strings (vortices) and monopoles are confined, when fields receiving nontrivial Aharonov-Bohm (AB) phases around a string develop vacuum expectation values (VEVs). We illustrate this in an $SU(2) \times U(1)$ gauge theory with charged triplet complex scalar fields admitting Alice strings and monopoles, by introducing charged doublet scalar fields receiving nontrivial AB phases around the Alice string. The Alice string carries a half $U(1)$ magnetic flux and $1/4$ $SU(2)$ magnetic flux taking a value in two of the $SU(2)$ generators characterizing the $U(1)$ modulus. This string is not confined in the absence of a doublet VEV in the sense that the $SU(2)$ magnetic flux can be detected at large distance by an AB phase around the string. When the doublet field develops VEVs, there appear two kinds of phases that we call deconfined and confined phases. When a single Alice string is present in the deconfined phase, the $U(1)$ modulus of the string and the vacuum moduli are locked (the bulk-soliton moduli locking). In the confined phase, the Alice string is inevitably attached by a domain wall that we call an AB defect and is confined with an anti-Alice string or another Alice string with the same $SU(2)$ flux. Depending on the partner, the pair annihilates or forms a stable doubly-wound Alice string having an $SU(2)$ magnetic flux inside the core, whose color cannot be detected at large distance by AB phases, implying the "color" confinement. The theory also admits stable Abrikosov-Nielsen-Olesen string and a ${\mathbb Z}_2$ string in the absence of the doublet VEVs, and each decays into two Alice strings in the presence of the doublet VEVs. A monopole in this theory can be constructed as a closed Alice string with the $U(1)$ modulus twisted once, and we show that with the doublet VEVs, monopoles are also confined to monopole mesons of the monopole charge two.