论文标题
UVID网络:通过嵌入时间信息来增强无人机航空视频的语义分割
UVid-Net: Enhanced Semantic Segmentation of UAV Aerial Videos by Embedding Temporal Information
论文作者
论文摘要
航空视频的语义细分已被广泛用于监测环境变化,城市规划和灾难管理的决策。这些决策支持系统的可靠性取决于视频语义分割算法的准确性。现有的基于CNN的视频语义分割方法通过合并一个其他模块,例如LSTM或光流,用于计算视频的时间动力学,这是计算开销。拟议的研究工作通过合并时间信息来改善视频语义细分的效率来修改CNN体系结构。 在这项工作中,为无人机视频语义分割提供了一个增强的基于编码器的CNN体系结构(UVID-NET)。所提出的体系结构的编码器嵌入了时间信息,以进行时间一致的标记。通过引入功能 - 更换器模块来增强解码器,该模块有助于准确地定位类标签。无人机视频语义分割的提议的UVID-NET架构在扩展的Manipaluavid数据集上进行了定量评估。已经观察到了0.79的性能度量,其明显大于其他最新算法。此外,拟议的工作即使是在Urban Street场景上的Uvid-Net的预训练模型的预训练,并在无人机空中视频上进行了最终层,也产生了令人鼓舞的结果。
Semantic segmentation of aerial videos has been extensively used for decision making in monitoring environmental changes, urban planning, and disaster management. The reliability of these decision support systems is dependent on the accuracy of the video semantic segmentation algorithms. The existing CNN based video semantic segmentation methods have enhanced the image semantic segmentation methods by incorporating an additional module such as LSTM or optical flow for computing temporal dynamics of the video which is a computational overhead. The proposed research work modifies the CNN architecture by incorporating temporal information to improve the efficiency of video semantic segmentation. In this work, an enhanced encoder-decoder based CNN architecture (UVid-Net) is proposed for UAV video semantic segmentation. The encoder of the proposed architecture embeds temporal information for temporally consistent labelling. The decoder is enhanced by introducing the feature-refiner module, which aids in accurate localization of the class labels. The proposed UVid-Net architecture for UAV video semantic segmentation is quantitatively evaluated on extended ManipalUAVid dataset. The performance metric mIoU of 0.79 has been observed which is significantly greater than the other state-of-the-art algorithms. Further, the proposed work produced promising results even for the pre-trained model of UVid-Net on urban street scene with fine tuning the final layer on UAV aerial videos.