论文标题

支持支持无人机网络的隐私权联合学习:基于学习的联合计划和资源管理

Privacy-Preserving Federated Learning for UAV-Enabled Networks: Learning-Based Joint Scheduling and Resource Management

论文作者

Yang, Helin, Zhao, Jun, Xiong, Zehui, Lam, Kwok-Yan, Sun, Sumei, Xiao, Liang

论文摘要

无人驾驶汽车(UAV)能够用作支持数据收集,人工智能(AI)模型培训和无线通信的飞行基站(BSS)。但是,由于设备的隐私问题以及无人机的计算或通信资源有限,将设备的原始数据发送到无人机服务器进行模型培训是不切实际的。此外,由于动态通道条件和无人机网络中设备的异质计算能力,因此需要进一步提高数据共享的可靠性和效率。在本文中,我们为支持多UAV的网络开发了异步联合学习(AFL)框架,该框架可以通过在本地启用模型培训而无需将原始敏感数据传输到无人机服务器来提供异步分布式计算。设备选择策略还引入了AFL框架,以防止低质量设备影响学习效率和准确性。此外,我们提出了一种基于异步的优势参与者 - 批评(A3C)的关节设备选择,无人机位置和资源管理算法,以提高联合的收敛速度和准确性。模拟结果表明,与其他现有解决方案相比,我们提出的框架和算法实现了更高的学习准确性和更快的联合执行时间。

Unmanned aerial vehicles (UAVs) are capable of serving as flying base stations (BSs) for supporting data collection, artificial intelligence (AI) model training, and wireless communications. However, due to the privacy concerns of devices and limited computation or communication resource of UAVs, it is impractical to send raw data of devices to UAV servers for model training. Moreover, due to the dynamic channel condition and heterogeneous computing capacity of devices in UAV-enabled networks, the reliability and efficiency of data sharing require to be further improved. In this paper, we develop an asynchronous federated learning (AFL) framework for multi-UAV-enabled networks, which can provide asynchronous distributed computing by enabling model training locally without transmitting raw sensitive data to UAV servers. The device selection strategy is also introduced into the AFL framework to keep the low-quality devices from affecting the learning efficiency and accuracy. Moreover, we propose an asynchronous advantage actor-critic (A3C) based joint device selection, UAVs placement, and resource management algorithm to enhance the federated convergence speed and accuracy. Simulation results demonstrate that our proposed framework and algorithm achieve higher learning accuracy and faster federated execution time compared to other existing solutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源