论文标题

通过自相关函数镜头的特征态热化假设

Eigenstate thermalization hypothesis through the lens of autocorrelation functions

论文作者

Schönle, C., Jansen, D., Heidrich-Meisner, F., Vidmar, L.

论文摘要

特征态征服假说(ETH)中的Srednicki Ansatz描述了通用哈密顿量的特征状态中可观察到的矩阵元素。我们在一维晶格中研究了一个量子混沌自旋特性模型,该晶格由一个旋转1/2 xx链组成,该链链与单个巡回的费米子耦合。在我们的研究中,我们专注于翻译不变的可观察物,包括电荷和能量电流,从而将ETH与运输特性联系起来。考虑到具有Hilbert-Schmidt规范的可观察到的,我们首先考虑了模型中的ETH的全面分析,考虑到最新的发展。特别重点是分析OffDiagonal矩阵元素$ | \langleα|的结构。 \帽子O | β\ rangle |^2 $在小特征态能量差的极限下$ω=e_β-e_α$。去除$ | \langleα|的主要指数抑制\帽子O | β\ rangle |^2 $,我们发现:(i)当前的矩阵元素表现出与所研究的其他可观察物不同的系统大小依赖性,(ii)其他几种可观察到的矩阵元素表现出具有lorentzian频率依赖性的Drude样结构。然后,我们还展示了如何从自相关功能中提取这些信息。最后,我们的研究通过对大部分频谱中特征状态的波动散落关系的数值分析进行了补充。我们确定了$ω$的制度,其中众所周知的波动 - 散落关系有效,对于有限系统而言。

Matrix elements of observables in eigenstates of generic Hamiltonians are described by the Srednicki ansatz within the eigenstate thermalization hypothesis (ETH). We study a quantum chaotic spin-fermion model in a one-dimensional lattice, which consists of a spin-1/2 XX chain coupled to a single itinerant fermion. In our study, we focus on translationally invariant observables including the charge and energy current, thereby also connecting the ETH with transport properties. Considering observables with a Hilbert-Schmidt norm of one, we first perform a comprehensive analysis of ETH in the model taking into account latest developments. A particular emphasis is on the analysis of the structure of the offdiagonal matrix elements $|\langle α| \hat O | β\rangle|^2$ in the limit of small eigenstate energy differences $ω= E_β- E_α$. Removing the dominant exponential suppression of $|\langle α| \hat O | β\rangle|^2$, we find that: (i) the current matrix elements exhibit a system-size dependence that is different from other observables under investigation, (ii) matrix elements of several other observables exhibit a Drude-like structure with a Lorentzian frequency dependence. We then show how this information can be extracted from the autocorrelation functions as well. Finally, our study is complemented by a numerical analysis of the fluctuation-dissipation relation for eigenstates in the bulk of the spectrum. We identify the regime of $ω$ in which the well-known fluctuation-dissipation relation is valid with high accuracy for finite systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源