论文标题

互联健康的深刻代表性:半监督学习,用于分析痴呆症患者尿路感染的风险

Deep Representation for Connected Health: Semi-supervised Learning for Analysing the Risk of Urinary Tract Infections in People with Dementia

论文作者

Li, Honglin, Kolanko, Magdalena Anita, Enshaeifar, Shirin, Skillman, Severin, Markides, Andreas, Kenny, Mark, Soreq, Eyal, Kouchaki, Samaneh, Jensen, Kirsten, Cameron, Loren, Crone, Michael, Freemont, Paul, Rostill, Helen, Sharp, David J., Nilforooshan, Ramin, Barnaghi, Payam

论文摘要

机器学习技术与内部监测技术相结合,为在痴呆症等长期疾病中自动化诊断和早期发现不良健康状况提供了独特的机会。但是,访问足够的标记培训样本并整合了高质量,从异质内监测技术中常规收集的数据是主要障碍,这阻碍了利用这些技术在现实世界中。这项工作提出了一个半监督的模型,该模型可以从常规收集的家庭观察和测量数据中持续学习。我们展示了我们的模型如何处理高度不平衡和动态数据,以在分析痴呆症中尿路感染(UTI)的风险时做出强大的预测。 UTI在老年人中很常见,构成了痴呆症患者可避免住院的主要原因之一。与健康相关的疾病(例如UTI)的个体患病率较低,这将其归类为零星病例(即稀有或分散但重要的事件)。这限制了获得足够的培训数据的访问,没有该数据,监督的学习模型可能会变得过于舒适或有偏见。我们介绍了一个概率的半监督学习框架,以解决这些问题。提出的方法使用家庭感应技术常规收集的数据为UTI产生风险分析评分。

Machine learning techniques combined with in-home monitoring technologies provide a unique opportunity to automate diagnosis and early detection of adverse health conditions in long-term conditions such as dementia. However, accessing sufficient labelled training samples and integrating high-quality, routinely collected data from heterogeneous in-home monitoring technologies are main obstacles hindered utilising these technologies in real-world medicine. This work presents a semi-supervised model that can continuously learn from routinely collected in-home observation and measurement data. We show how our model can process highly imbalanced and dynamic data to make robust predictions in analysing the risk of Urinary Tract Infections (UTIs) in dementia. UTIs are common in older adults and constitute one of the main causes of avoidable hospital admissions in people with dementia (PwD). Health-related conditions, such as UTI, have a lower prevalence in individuals, which classifies them as sporadic cases (i.e. rare or scattered, yet important events). This limits the access to sufficient training data, without which the supervised learning models risk becoming overfitted or biased. We introduce a probabilistic semi-supervised learning framework to address these issues. The proposed method produces a risk analysis score for UTIs using routinely collected data by in-home sensing technologies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源