论文标题

制造系统中的分布式联合动态维护和生产计划:基于模型预测控制和弯曲器分解的框架

Distributed joint dynamic maintenance and production scheduling in manufacturing systems: Framework based on model predictive control and Benders decomposition

论文作者

Rokhforoz, Pegah, Fink, Olga

论文摘要

根据条件安排维护,分别是系统的降解水平,从而提高了系统的可靠性,同时最大程度地减少了维护成本。由于降解级别在系统操作期间动态变化,因此我们面临动态维护调度问题。在本文中,我们根据制造系统的降解水平解决了制造系统的动态维护计划。制造系统由几个具有定义能力和个体动态降解模型的单元组成,试图优化其奖励。这些单位出售其生产能力,同时根据降解状态保持系统以防止失败。制造单元负责满足系统的需求。这会导致代理之间的耦合约束。因此,我们面临一个大规模的混合动态维护计划问题。为了处理系统的动态模型和大规模优化,我们建议使用模型预测控制(MPC)和Benders分解方法提出分布式算法。首先,在拟议的算法中,主问题获得了所有代理的维护计划,然后基于此数据,使用分布式MPC方法获得了最佳生产,该方法采用了双重分解方法来应对代理之间的耦合约束。在案例研究中研究了提出方法的有效性。

Scheduling the maintenance based on the condition, respectively the degradation level of the system leads to improved system's reliability while minimizing the maintenance cost. Since the degradation level changes dynamically during the system's operation, we face a dynamic maintenance scheduling problem. In this paper, we address the dynamic maintenance scheduling of manufacturing systems based on their degradation level. The manufacturing system consists of several units with a defined capacity and an individual dynamic degradation model, seeking to optimize their reward. The units sell their production capacity, while maintaining the systems based on the degradation state to prevent failures. The manufacturing units are jointly responsible for fulfilling the demand of the system. This induces a coupling constraint among the agents. Hence, we face a large-scale mixed-integer dynamic maintenance scheduling problem. In order to handle the dynamic model of the system and large-scale optimization, we propose a distributed algorithm using model predictive control (MPC) and Benders decomposition method. In the proposed algorithm, first, the master problem obtains the maintenance scheduling for all the agents, and then based on this data, the agents obtain their optimal production using the distributed MPC method which employs the dual decomposition approach to tackle the coupling constraints among the agents. The effectiveness of the proposed method is investigated on a case study.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源