论文标题

与有限组关联的联合订单图

The co-prime order graph associated with a finite group

论文作者

Ma, Xuanlong, Wang, Zhonghua

论文摘要

令$ g $为有限的组。 $ g $的联合订单图是其顶点集为$ g $的图形,如果gcd $(o(x),o(y(y))$是$ 1 $或prime,则两个不同的顶点$ x,y $相邻,其中$ o(x)$和$ o(y(y)$是$ o(x)$和$ o(y)$的订单分别为$ $ x $和$ y $。在本文中,我们表征了所有有限组的共同订单图,并对所有有限组的共同订单图为平面的所有有限组。此外,我们计算了循环群,二面体组和广义季节群的联合序列图的顶点连接性,该基团回答了Banerjee(2019)的问题。最后,我们证明,对于固定的积极整数$ k $,有限的许多有限群体的联合订单图具有(不可定位的属$ k $)。作为应用程序,我们对所有有限组的共同订单图具有(不可定位的属)分类。

Let $G$ be a finite group. The co-prime order graph of $G$ is the graph whose vertex set is $G$, and two distinct vertices $x,y$ are adjacent if gcd$(o(x),o(y))$ is either $1$ or a prime, where $o(x)$ and $o(y)$ are the orders of $x$ and $y$, respectively. In this paper, we characterize all finite groups whose co-prime order graphs are complete and classify all finite groups whose co-prime order graphs are planar. Also, we compute the vertex-connectivity of the co-prime order graph of a cyclic group, a dihedral group and a generalized quaternion group, which answers a question by Banerjee (2019). Finally, we prove that, for a fixed positive integer $k$, there are finitely many finite groups whose co-prime order graphs have (non)orientable genus $k$. As applications, we classify all finite groups whose co-prime order graphs have (non)orientable genus one and two.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源