论文标题
低密度互连纳米线网络中的3D纳米磁性
3D Nanomagnetism in Low Density Interconnected Nanowire Networks
论文作者
论文摘要
在CM尺度区域,已实现了密度低至40 mg/cm^{3}的独立的,相互连接的金属纳米线网络,使用电沉积到多碳酸盐膜中,这些膜已在多个角度以多个角度进行离子传播。相互连接的磁性纳米线的网络进一步为探索三维纳米磁性提供了一个令人兴奋的平台,在该平台中,它们的结构,拓扑和挫败感可以用作量身定制材料属性的额外自由度。钴网络中的新磁化逆转机制是通过一阶反转曲线方法捕获的,该方法证明了从强烈的电磁偶极相互作用到相交介导的结构域壁固定和传播的演变,并最终变成形状 - 动脉旋转偏移占主导地位的磁化磁化强度逆转。这些发现为用于记忆,复杂计算和神经形态的三维集成磁性设备开辟了新的可能性。
Free-standing, interconnected metallic nanowire networks with density as low as 40 mg/cm^{3} have been achieved over cm-scale areas, using electrodeposition into polycarbonate membranes that have been ion-tracked at multiple angles. Networks of interconnected magnetic nanowires further provide an exciting platform to explore 3-dimensional nanomagnetism, where their structure, topology and frustration may be used as additional degrees of freedom to tailor the materials properties. New magnetization reversal mechanisms in cobalt networks are captured by the first-order reversal curve method, which demonstrate the evolution from strong demagnetizing dipolar interactions to intersections-mediated domain wall pinning and propagation, and eventually to shape-anisotropy dominated magnetization reversal. These findings open up new possibilities for 3-dimensional integrated magnetic devices for memory, complex computation, and neuromorphics.