论文标题
大规模接触二进制的详细进化模型:I。麦哲伦云的模型网格和合成种群
Detailed evolutionary models of massive contact binaries: I. Model grids and synthetic populations for the Magellanic Clouds
论文作者
论文摘要
大多数最初几天的近距离二进制恒星都经历了接触阶段,其中两颗恒星同时溢出了其Roche Lobes。我们对大规模接触二进制的演变进行了首次专门研究,并对其观察到的特性进行了全面的预测。我们假定保守的传质,计算了每个大小麦芽岩云的2790个详细的二进制模型。这两个网格的初始参数空间均涵盖20 $ \,\ textrm {m} _ {\ odot} $,轨道周期为0.6至2天,质量比为0.6至1.0。我们发现,在核时标上保持接触的模型朝着相等的质量发展,与观察到的对应物的质量比相呼应。最终,我们的核电刻度模型的命运是在主要序列上合并。我们预测的两个星系中O型接触二进制的周期质量比分布相似,并且我们预计这两个麦哲伦云中有10个这样的系统。尽管我们可以在很大程度上重现观察到的分布,但我们过度估计了等质量接触二进制的种群。如果我们还考虑接近接触的二进制文件,这种情况会有所修复。我们的理论分布特别适合与周期$ <$ 2天和总体$ \ Lessapprox45 \,\ textrm {m} _ {\ odot} $的联系二进制文件。我们预计,恒星风,非保守传质和包络通货膨胀在形成更大,更较长的接触二进制物中发挥了作用。
The majority of close massive binary stars with initial periods of a few days experience a contact phase, in which both stars overflow their Roche lobes simultaneously. We perform the first dedicated study of the evolution of massive contact binaries and provide a comprehensive prediction of their observed properties. We compute 2790 detailed binary models for the Large and Small Magellanic Clouds each, assuming a conservative mass transfer. The initial parameter space for both grids span total masses from 20 to 80$\,\textrm{M}_{\odot}$, orbital periods of 0.6 to 2 days and mass ratios of 0.6 to 1.0. We find that models that remain in contact over nuclear timescales evolve towards equal masses, echoing the mass ratios of their observed counterparts. Ultimately, the fate of our nuclear-timescale models is to merge on the main sequence. Our predicted period-mass ratio distributions of O-type contact binaries are similar for both galaxies, and we expect 10 such systems together in both Magellanic Clouds. While we can largely reproduce the observed distribution, we over-estimate the population of equal-mass contact binaries. This situation is somewhat remedied if we also account for binaries that are approaching contact. Our theoretical distributions work particularly well for contact binaries with periods $<$2 days and total masses $\lessapprox45\,\textrm{M}_{\odot}$. We expect stellar winds, non-conservative mass transfer and envelope inflation to have played a role in the formation of the more massive and longer-period contact binaries.