论文标题
麦克斯韦方程在各向异性材料中具有转移边界的摄动理论
Perturbation theory for Maxwell's equations in anisotropic materials with shifting boundaries
论文作者
论文摘要
扰动理论是一种基于泰勒膨胀定理的估计方法,可用于研究小变化的电磁溶液。通过将尖锐的边界视为平滑系统的限制,先前的研究在将标准扰动理论应用于麦克斯韦的方程式时解决了问题,以实现各向同性介电接口的小移位。但是,在处理各向异性材料时,进行了近似值,并导致误差不令人满意。在这里,我们为各向异性介电界面中的小变化开发了一种修改的扰动理论。通过为介电常数的每个组件使用优化的平滑函数,我们获得了一种计算边界移动时各向异性介电常数场的内在频移的方法,而无需近似。我们的方法在计算强瞬间材料中的特征频率变化时显示了准确的结果,并且可以广泛用于各向异性介电界面的小移位。
Perturbation theory is a kind of estimation method based on theorem of Taylor expansion, and is useful to investigate electromagnetic solutions of small changes. By considering a sharp boundary as a limit of smoothed systems, previous study has solved the problem when applying standard perturbation theory to Maxwell's equations for small shifts in isotropic dielectric interfaces. However, when dealing with anisotropic materials, an approximation is conducted and leads to an unsatisfactory error. Here we develop a modified perturbation theory for small shifts in anisotropically dielectric interfaces. By using optimized smoothing function for each component of permittivity, we obtain a method to calculate the intrinsic frequency shifts of anisotropic permittivity field when boundaries shift, without approximation. Our method shows accurate results when calculating eigenfrequency's shifts in strong-anisotropy materials, and can be widely used for small shifts in anisotropically dielectric interfaces.