论文标题
IFSS-NET:交互式少量暹罗网络,用于更快的肌肉分割和体积超声传播
IFSS-Net: Interactive Few-Shot Siamese Network for Faster Muscle Segmentation and Propagation in Volumetric Ultrasound
论文作者
论文摘要
我们提出了一种准确,快速,有效的方法,用于在3D徒手超声数据中进行分割和肌肉掩盖传播,以准确的体积定量。部署了一个深层的暹罗3D编码器网络,该网络捕获了连续切片的肌肉外观和形状的演变。我们用它来传播由临床专家注释的参考掩码。为了处理整个体积中肌肉形状的更长变化并提供准确的传播,我们设计了双向长期记忆模块。此外,为了训练模型的训练样本最少,我们提出了一种策略,该策略结合了从少数注释的2D超声切片与未经宣布的切片的顺序伪标记结合。我们引入了目标函数的减少更新,以指导模型收敛的情况下,在没有大量带注释的数据的情况下。在使用少量量的培训后,从弱监督训练到几次设置的减少更新过渡。最后,为了处理前景和背景肌肉像素之间的阶级不平衡,我们提出了一个参数tversky损失函数,该功能学会自适应地惩罚误报和假阴性。我们验证了从44位受试者的61600张图像的数据集上的三个低LIMB肌肉的分割,标签传播和体积计算的方法。我们达到了一个超过$ 95〜 \%$的骰子分数系数和一个体积错误\ textColor {black} {of} $ 1.6035 \ pm 0.587〜 \%$。
We present an accurate, fast and efficient method for segmentation and muscle mask propagation in 3D freehand ultrasound data, towards accurate volume quantification. A deep Siamese 3D Encoder-Decoder network that captures the evolution of the muscle appearance and shape for contiguous slices is deployed. We uses it to propagate a reference mask annotated by a clinical expert. To handle longer changes of the muscle shape over the entire volume and to provide an accurate propagation, we devise a Bidirectional Long Short Term Memory module. Also, to train our model with a minimal amount of training samples, we propose a strategy combining learning from few annotated 2D ultrasound slices with sequential pseudo-labeling of the unannotated slices. We introduce a decremental update of the objective function to guide the model convergence in the absence of large amounts of annotated data. After training with a small number of volumes, the decremental update transitions from a weakly-supervised training to a few-shot setting. Finally, to handle the class-imbalance between foreground and background muscle pixels, we propose a parametric Tversky loss function that learns to adaptively penalize false positives and false negatives. We validate our approach for the segmentation, label propagation, and volume computation of the three low-limb muscles on a dataset of 61600 images from 44 subjects. We achieve a Dice score coefficient of over $95~\%$ and a volumetric error \textcolor{black}{of} $1.6035 \pm 0.587~\%$.