论文标题
Stiefel Whitney类,用于$ \ mathrm {gl} _2的真实表示形式(\ Mathbb {f} _Q)$
Stiefel Whitney Classes for Real representations of $\mathrm{GL}_2(\mathbb{F}_q)$
论文作者
论文摘要
我们计算了$ \ mathrm {gl} _2(\ mathbb {f} _q)$的真实表示$π$ $π$的总hitney类,其中$ q $是奇数。 $π$的障碍物类别被定义为不消失的最低正学位的Stiefel Whitney类。如果$ \detπ= 1 $,我们就其字符值的障碍物类别提供了$π$的表达式。
We compute the total Stiefel Whitney class for a real representation $π$ of $\mathrm{GL}_2(\mathbb{F}_q)$, where $q$ is odd. The obstruction class of $π$ is defined to be the Stiefel Whitney class of lowest positive degree that does not vanish. We provide an expression for the obstruction class of $π$ in terms of its character values if $\detπ=1$.