论文标题

表弟的引理的相反数学

The reverse mathematics of Cousin's lemma

论文作者

Barrett, Jordan Mitchell

论文摘要

表弟的引理是一种紧凑的原理,在研究仪表积分(Lebesgue积分的概括)时自然会产生。我们使用弗里德曼(Friedman)和辛普森(Simpson)在二阶算术中使用弗里德曼(Friedman)和辛普森(Simpson)的反向数学研究表弟的引理的公理强度。我们证明,超过$ \ mathsf {rca} _0 $: (i)堂兄的连续功能的引理相当于系统$ \ mathsf {wkl} _0 $; (ii)Cousin的Baire 1功能的引理至少与$ \ Mathsf {aca} _0 $一样强; (iii)Cousin的Baire 2函数的引理至少与$ \ MATHSF {ATR} _0 $一样强。

Cousin's lemma is a compactness principle that naturally arises when studying the gauge integral, a generalisation of the Lebesgue integral. We study the axiomatic strength of Cousin's lemma for various classes of functions, using Friedman and Simpson's reverse mathematics in second-order arithmetic. We prove that, over $\mathsf{RCA}_0$: (i) Cousin's lemma for continuous functions is equivalent to the system $\mathsf{WKL}_0$; (ii) Cousin's lemma for Baire 1 functions is at least as strong as $\mathsf{ACA}_0$; (iii) Cousin's lemma for Baire 2 functions is at least as strong as $\mathsf{ATR}_0$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源