论文标题

使用卷积神经网络学习水晶场参数

Learning crystal field parameters using convolutional neural networks

论文作者

Berthusen, Noah F., Sizyuk, Yuriy, Scheurer, Mathias S., Orth, Peter P.

论文摘要

我们提出了一种深度机器学习算法,以从稀土磁性材料的热力学数据中提取晶体场(CF)史蒂文斯参数。该算法采用了二维卷积神经网络(CNN),该网络(CNN)受到磁化,磁敏感性和特定的热数据的训练,理论上在单离子近似中进行了计算,并使用标准小波转换进行了进一步处理。我们将方法应用于立方,六角形和四方对称性的晶体场,以及整数和半级数的总角动量值$ j $ j $ j $ j $ j $ j $ j $。我们评估了其在理论生成的合成和先前发布的实验数据上的性能,并在CEAGSB $ _2 $,pragsb $ _2 $和PRMG $ _2 $ _2 $ CU $ _9 $上评估其性能,并发现它可以可靠,准确地提取所有站点的CF参数以及所有J $ J $的CF参数。这表明CNN提供了一种无偏的方法来提取CF参数,从而避免了乏味的多参数拟合程序。

We present a deep machine learning algorithm to extract crystal field (CF) Stevens parameters from thermodynamic data of rare-earth magnetic materials. The algorithm employs a two-dimensional convolutional neural network (CNN) that is trained on magnetization, magnetic susceptibility and specific heat data that is calculated theoretically within the single-ion approximation and further processed using a standard wavelet transformation. We apply the method to crystal fields of cubic, hexagonal and tetragonal symmetry and for both integer and half-integer total angular momentum values $J$ of the ground state multiplet. We evaluate its performance on both theoretically generated synthetic and previously published experimental data on CeAgSb$_2$, PrAgSb$_2$ and PrMg$_2$Cu$_9$, and find that it can reliably and accurately extract the CF parameters for all site symmetries and values of $J$ considered. This demonstrates that CNNs provide an unbiased approach to extracting CF parameters that avoids tedious multi-parameter fitting procedures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源