论文标题

通过非线性变形代理保留医学图像分析的隐私图像分析

Privacy Preserving for Medical Image Analysis via Non-Linear Deformation Proxy

论文作者

Kim, Bach Ngoc, Dolz, Jose, Desrosiers, Christian, Jodoin, Pierre-Marc

论文摘要

我们提出了一个客户服务器系统,该系统允许在保留患者身份的同时分析多中心医学图像。在我们的方法中,客户通过在输入图像上应用伪随机的非线性变形来保护患者的身份。这将导致代理图像发送到服务器进行处理。然后,服务器返回客户端将其恢复为规范表单的变形处理的图像。我们的系统具有三个组件:1)产生伪随机变形函数的流场发生器,2)一种暹罗歧视器,该暹罗歧视器从处理的图像中学习患者身份,3)分析代理图像的内容的医学图像处理网络。该系统以对抗性方式进行了端到端训练。通过欺骗歧视器,流场发生器学会产生双向非线性变形,该变形允许从输入图像和输出结果中删除和恢复受试者的身份。在端到端培训后,流场发生器将部署在客户端,分段网络被部署在服务器端。使用来自两个不同数据集的图像对MRI脑部分割的任务进行了验证。结果表明,我们方法的分割精度类似于在未编码图像上训练的系统,同时大大降低了恢复受试者身份的能力。

We propose a client-server system which allows for the analysis of multi-centric medical images while preserving patient identity. In our approach, the client protects the patient identity by applying a pseudo-random non-linear deformation to the input image. This results into a proxy image which is sent to the server for processing. The server then returns back the deformed processed image which the client reverts to a canonical form. Our system has three components: 1) a flow-field generator which produces a pseudo-random deformation function, 2) a Siamese discriminator that learns the patient identity from the processed image, 3) a medical image processing network that analyzes the content of the proxy images. The system is trained end-to-end in an adversarial manner. By fooling the discriminator, the flow-field generator learns to produce a bi-directional non-linear deformation which allows to remove and recover the identity of the subject from both the input image and output result. After end-to-end training, the flow-field generator is deployed on the client side and the segmentation network is deployed on the server side. The proposed method is validated on the task of MRI brain segmentation using images from two different datasets. Results show that the segmentation accuracy of our method is similar to a system trained on non-encoded images, while considerably reducing the ability to recover subject identity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源